首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2244篇
  免费   169篇
  国内免费   158篇
化学   2199篇
晶体学   11篇
力学   32篇
综合类   2篇
数学   14篇
物理学   313篇
  2024年   5篇
  2023年   28篇
  2022年   45篇
  2021年   64篇
  2020年   59篇
  2019年   69篇
  2018年   67篇
  2017年   86篇
  2016年   123篇
  2015年   106篇
  2014年   112篇
  2013年   254篇
  2012年   122篇
  2011年   150篇
  2010年   134篇
  2009年   158篇
  2008年   181篇
  2007年   157篇
  2006年   153篇
  2005年   146篇
  2004年   109篇
  2003年   98篇
  2002年   53篇
  2001年   21篇
  2000年   12篇
  1999年   12篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1985年   2篇
排序方式: 共有2571条查询结果,搜索用时 15 毫秒
91.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   
92.
瞿保钧 《高分子科学》2010,28(4):563-571
<正>Synergistic effects of layered double hydroxide(LDH) with intumescent flame retardanct(IFR) of phosphorus-nitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH(PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),limiting oxygen index(LOI),UL-94 test,cone calorimeter test(CCT) and thermo-gravimetric analysis (TGA).The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix.The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning.The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples.The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.  相似文献   
93.
94.
Two methacrylate‐modified clays have been prepared and used to produce nanocomposites of polystyrene and poly(methyl methacrylate) by in situ polymerization. These nanocomposites have been characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), cone calorimetry and the evaluation of mechanical properties. When the clay contains only a single methacrylate unit, the styrene system is exfoliated but methacrylate is intercalated. When two methacrylate units are present on the cation of the clay, both systems are exfoliated. TGA data show that the thermal stability of all the nanocomposites is improved, as expected. The relationships between the fire properties and nanostructure of the nanocomposites are complicated, as shown by cone calorimetry. The conclusions that one may reach using cone calorimetry do not completely agree with those from XRD and TEM. The evaluation of mechanical properties shows an increase in Young's modulus for all nanocomposites along with a decrease in elongation; tensile strength is decreased for methacrylate nanocomposites but increased for styrenics systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
95.
Exfoliated graphite has been synthesized by first synthesizing H2SO4 intercalated compound in a H2O2‐H2SO4 mixture, followed by exfoliation under microwave irradiation. Poly(arylene disulfide)/graphite nanocomposites were then fabricated by absorbing cyclic(arylene disulfide) oligomers into the pores of exfoliated graphite. Subsequently, the nanocomposite precursor was subjected to heat treatment to carry out the in situ ring‐opening polymerization of the oligomers via free radical mechanism. The as‐prepared nanocomposite exhibited a exfoliated nanostructure as evidenced by transmission electron microscopy (TEM) observation. The nanocomposite with a very small amount of graphite, 5 wt%, possesses a highly electrical conductivity of 4 S/cm, therefore, many applications can be found as conductive materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
96.
Solution impregnations, pulltrusion and film stacking are widely used methods to prepare thermoplastic composite materials. Extruders are used to melt the polymer and to incorporate fibers into the polymer in order to modify physical properties. In this article, the compounding of colloidal silica nanoparticles filled polyamide‐6 (PA‐6) is achieved using a twin‐screw extruder, which has a significant market share due to its low cost and easy maintenance. The experiments were performed at 250 rpm and the bulk throughput was 6 kg h?1 with a pump pressure of 30 bars. The composites were characterized with nuclear magnetic resonance (NMR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). As determined by WAXD, the PA‐6 showed higher amounts of γ‐phase when compared to other synthesis methods such as in situ polymerization. TEM pictures showed that the silica particles aggregated nevertheless, upon addition of 14% (w/w) silica the E‐modulus increased from 2.7 to 3.9 GPa indicating that an effective mechanical coupling with the polymer was achieved. The behavior, illustrated with dynamic mechanical analysis (DMA) curves, indicated that in general when a filled system is compared to unfilled material, the values of the moduli (E′ and E″) increased and tan δ decreased. Determination of molecular mass distribution of the samples by means of size exclusion chromatography (SEC) coupled to a refractive index (RI), viscosity (DV) and light scattering (LS) detector revealed that the addition of silica did not decrease the average molecular weight of the polymer matrix, which is of importance for composite applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
97.
98.
99.
Emulsion‐based coatings and adhesives are in growing demand due to an increased awareness of health and safety issues arising from solvent‐based polymer manufacturing processes. However, emulsion‐based techniques often require additional development to achieve equal or better application performance compared to solvent‐based processes. The inclusion of nanoparticles in emulsion‐based coatings and adhesives can be considered as a promising means to enhance performance. This paper reviews the current progress on the synthesis of emulsion‐based nanocomposites for coating and adhesive applications and addresses the principles and techniques for nanoparticle dispersions and their inclusion into polymer latexes. The effects of nanoparticle shape and size on the enhancement of nanocomposite properties are also highlighted. Among the reinforcing nanoparticles such as nanoclays, carbon nanotubes, and cellulose nanocrystals (CNCs), CNCs are promising due to their abundance, nontoxicity, and accessible surface hydroxyl groups, which facilitate their compatibility with polymer latexes via physical and chemical treatments.  相似文献   
100.
Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号