首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3919篇
  免费   112篇
  国内免费   81篇
化学   2224篇
晶体学   55篇
力学   398篇
综合类   4篇
数学   641篇
物理学   790篇
  2025年   1篇
  2024年   24篇
  2023年   58篇
  2022年   133篇
  2021年   104篇
  2020年   126篇
  2019年   116篇
  2018年   83篇
  2017年   115篇
  2016年   90篇
  2015年   96篇
  2014年   134篇
  2013年   317篇
  2012年   236篇
  2011年   187篇
  2010年   161篇
  2009年   246篇
  2008年   242篇
  2007年   239篇
  2006年   234篇
  2005年   175篇
  2004年   128篇
  2003年   135篇
  2002年   105篇
  2001年   73篇
  2000年   94篇
  1999年   73篇
  1998年   68篇
  1997年   34篇
  1996年   25篇
  1995年   25篇
  1994年   31篇
  1993年   27篇
  1992年   28篇
  1991年   14篇
  1990年   12篇
  1989年   7篇
  1988年   8篇
  1987年   20篇
  1986年   14篇
  1985年   15篇
  1984年   17篇
  1983年   3篇
  1982年   13篇
  1981年   7篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
排序方式: 共有4112条查询结果,搜索用时 15 毫秒
101.
This paper presents a further study of the Manning and Darcy-Weisbach resistance coefficients, as they play a significant role in assessing the cross-sectional mean velocity, conveyance capacity and determining the lateral distribution of depth mean velocity and local boundary shear stress in compound channels. The relationships between the local, zonal and overall resistance coefficients, and a wide range of geometries and different roughness between the main channel and the flood plain are established by analyzing a vast amount of experimental data from a British Science and Engineering Research Council Flood Channel Facility (SERC-FCF). And the experimental results also show that the overall Darcy-Weisbach resistance coefficient for a compound channel is the function of Reynolds number, but the function relationship is different from that for a single channel. By comparing and analyzing the conventional methods with the experimental data to predict composite roughness in compound channels, it is found that these methods are not suitable for compound channels. Moreover, the reason why the conventional methods can not assess correctly the conveyance capacity of compound channels is also analyzed in this paper.The project supported by the National Natural Science Foundation of China (50279024), the National Key Basic Research and Development Program of China (973 Program) (2003CB415202) and the Specialized Research Fund for the Doctoral Program of Higher Education (20030610039)The English text was polished by Ron Marshall  相似文献   
102.
In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place. To cite this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).  相似文献   
103.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   
104.
喷水推进器推力的CFD计算方法研究   总被引:4,自引:1,他引:4  
简要介绍获取喷水推进器推力的理论、试验及数值计算(CFD)方法,重点研究采用动量流量法和壁面积分法计算喷水推进器推力的CFD方法。采用多块网格技术,用六面体结构化网格和四面体非结构化网格相结合的混合网格离散计算区域,采用稳态多参考系方法求解RANS方程,对喷水推进器进水流道、叶轮、导叶体和喷口所组成的整个流场进行数值计算。计算中采用了k-ε湍流模型和标准壁面函数,对用动量流量法计算推力方法中所需的假想流管分界面和进口面的求取做了分析,将两种方法计算的推力与厂商提供的推力特性曲线进行了对比。结果表明,采用CFD计算和分析方法来研究喷水推进系统推力性能是可行、可信的。  相似文献   
105.
Finite element deflection and stress results are presented for four flat plate configurations and are computed using kinematically approximate (rotation tensor, strain tensor or both) non-linear Reissner-Mindlin plate models. The finite element model is based on a mixed variational principle and has both displacement and force field variables. High order interpolation of the field variables is possible through p-type discretization. Results for some of the higher order approximate models are given for what appears to be the first time. It is found that for the class of example problems examined, exact strain tensor but approximate rotation tensor theories can significantly improve the solution over approximate strain tensor models such as the von Kármán and moderate rotation models when moderate deflections/rotations are present. However, for each of the problems examined (with the exception of a postbuckling problem) the von Kármán and moderate rotation model results compared favorably with the higher order models for deflection magnitudes which could be reasonably expected in typical aeroelastic configurations.  相似文献   
106.
某高陡岩质边坡地质条件复杂、软弱结构面发育、开挖高度大、坡度陡、临空面多,为边坡变形提供了有利的空间,边坡多处出现失稳破坏迹象。通过对边坡工程地质条件调查,岩体结构特征和边坡开挖等影响因素的分析,认为边坡变形主要发生在强风化强卸荷岩体内,受软弱结构面的控制比较明显,表现为结构面组合控制的块体变形失稳破坏模式。采用3DEC数值模拟软件,模拟了边坡开挖后坡体变形特征,数值模拟结果表明,边坡浅表层块体以及控制性块体稳定性差,可能导致边坡产生整体失稳。  相似文献   
107.
Two-fluid model used for free surface flows with large characteristic scales is improved; the smeared interface is sharpened with conservative level set method and the surface tension force with wetting angle is implemented. Surface tension force is split between two phases with several models. Detailed analysis showed the splitting of surface tension force with volume averaging as the most appropriate. The improved two-fluid model with interface sharpening and implemented surface tension is validated on several test cases. The pressure jump over a droplet interface test case showed that the pressure jump in simulation converges with grid refinement to the analytical one. The parasitic currents in simulation are one order of magnitude larger than in simulation with volume of fluid model. In the oscillating droplet test case the time period of oscillating droplet with initially ellipsoid or square shape is similar to the analytical time period. In the rising bubble test case, the rising bubble position, terminal velocity, and circularity are similar to the one observed in simulations with level set model. The wetting angle is implemented in the two-fluid model with interface sharpening and surface tension force. Model is tested in the simulation of droplet in contact with wall with different wetting angles.  相似文献   
108.
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equa- tions of turbulence, allowing the inhomogeneous structural parameters of turbulence to be optimized. We name this model as the "EMMS-based turbulence model", and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room, The numerical results show that the EMMS-hased turbulence model improves the accuracy of turbulence modeling due to it considers the principle of compromise in competition between viscosity and inertia.  相似文献   
109.
综述了图形处理器(GPU)在计算化学中的应用和进展.首先简单介绍了GPU在科学计算中应用的发展,然后分别详细讲述了迄今几个使用GPU和CUDA(compute unified device architecture,显卡厂商Nvidia推出的计算平台)开发工具设计的量子化学计算和分子动力学(MD)模拟的算法和程序,尤其对目前唯一完全使用GPU技术开发的量子化学计算软件TeraChem做了完备的介绍,包括算法、实现的细节和程序目前的功能.此外,本文还对GPU在计算化学上将会发挥的作用做出了极为乐观的展望.  相似文献   
110.
Natural materials and structures are increasingly becoming a source of inspiration for the design novel of engineering systems. In this context, the structure of fish skin, made of an intricate arrangement of flexible plates growing out of the dermis of a majority of fish, can be of particular interest for materials such as protective layers or flexible electronics. To better understand the mechanics of these composite shells, we introduce here a general computational framework that aims at establishing a relationship between their structure and their overall mechanical response. Taking advantage of the periodicity of the scale arrangement, it is shown that a representative periodic cell can be introduced as the basic element to carry out a homogenization procedure based on the Hill-Mendel condition. The proposed procedure is applied to the specific case of the fish skin structure of the Morone saxatilis, using a computational finite element approach. Our numerical study shows that fish skin possesses a highly anisotropic response, with a softer bending stiffness in the longitudinal direction of the fish. This softer response arises from significant scale rotations during bending, which induce a stiffening of the response under large bending curvature. Interestingly, this mechanism can be suppressed or magnified by tuning the rotational stiffness of the scale-dermis attachment but is not activated in the lateral direction. These results are not only valuable to the engineering design of flexible and protective shells, but also have implications on the mechanics of fish swimming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号