首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   16篇
  国内免费   46篇
化学   190篇
晶体学   1篇
力学   90篇
数学   29篇
物理学   246篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   14篇
  2019年   38篇
  2018年   10篇
  2017年   9篇
  2016年   14篇
  2015年   7篇
  2014年   14篇
  2013年   28篇
  2012年   13篇
  2011年   44篇
  2010年   29篇
  2009年   74篇
  2008年   35篇
  2007年   54篇
  2006年   22篇
  2005年   39篇
  2004年   16篇
  2003年   18篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1968年   2篇
排序方式: 共有556条查询结果,搜索用时 109 毫秒
91.
Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).  相似文献   
92.
A Lagrangian framework is set out to describe turbulent non-premixed combustion in high speed coflowing jet flows. The final aim is to provide a robust computational methodology to simulate, in various conditions, the underexpanded GH2/GO2 torch jet that is used to initiate combustion in an expander cycle engine. The proposed approach relies on an early modelling proposal of Borghi and his coworkers. The model is well suited to describe finite rate chemistry effects and its recent extension to high speed flows allows one to take the influence of viscous dissipation phenomena into account. Indeed, since the chemical source terms are highly temperature sensitive, the influence of viscous phenomena on the thermal runaway is likely to be all the more pronounced since the Mach number values are high. The validation of the extended model has been recently performed through the numerical simulation of two distinct well-documented experimental databases. Only a brief summary of this preliminary validation step is provided here. The main purpose of the present work is to proceed with the numerical simulation of geometries that bring together the essential peculiarities of the underexpanded GH2/GO2 torch. The behavior of the corresponding supersonic coflowing jet flames for various conditions is discussed in the light of computational results. To cite this article: J.-F. Izard, A. Mura, C. R. Mecanique 337 (2009).  相似文献   
93.
Large-Eddy Simulations (LES) of an evaporating two-phase flow in an experimental burner are performed using two different solvers, CDP from CTR-Stanford and AVBP from CERFACS, on the same grid and for the same operating conditions. Results are evaluated by comparison with experimental data. The CDP code uses a Lagrangian particle tracking method (EL) while the code AVBP can be coupled either with a mesoscopic Eulerian approach (EE) or with a Lagrangian method (EL). After a validation of the purely gaseous flow in the burner, liquid-phase dynamics, droplet dispersion and fuel evaporation are qualitatively and quantitatively evaluated for three two-phase flow simulations. They are respectively referred as: CDP-EL, AVBP-EE and AVBP-EL. The results of the three simulations show reasonable agreement with experiments for the two-phase flow case. To cite this article: J.M. Senoner et al., C. R. Mecanique 337 (2009).  相似文献   
94.
Simultaneous measurements of PLIF-kerosene and PLIF-OH have been successfully performed in a multipoint injection system for various overall equivalence ratio, air inlet temperature between 480 and 730 K and pressure up to 2.2 MPa. Single shot 2D-maps of the spatial distribution of kerosene vapour and OH radical in the combustor have been recorded with good signal-to-noise ratio. Results show that depending on the split between the pilot and the main injectors, the flame front exhibits a single or a double structure. Good spatial correlation between the repartition of the kerosene vapour and the position of the flame front was observed; in particular, no “dark zone” is observed between the fuel and the flame front. As temperature and pressure increase, fuel evaporation improves and the spatial distribution of OH radical becomes more homogeneous in the combustor, suggesting a partially-distributed combustion. To cite this article: M. Orain et al., C. R. Mecanique 337 (2009).  相似文献   
95.
应用高分辨率的Bruker EQUINOX55型遥感FTIR,对含有大量高氯酸铵和聚四氟乙烯的高红外活性的固体推进剂燃烧火焰的红外光谱特性进行了研究。设定遥感FTIR光谱仪的光谱分辨率为4 cm-1,连续实时地收集燃烧进行到0,9,18,27和36 s时火焰的红外发射光谱图。采用分子转振光谱测温法,实时测定了固体推进剂的燃烧温度,测得的温度分别为1 992.5,2 610.9,2 294.4,2 361.1和1 916.9 K,校正了仪器的响应函数,得到了固体推进剂燃烧火焰的绝对光谱能量分布图,以及在不同时刻燃烧产物HCl,HF,CO2和CO的实时浓度。研究结果表明,遥感FTIR可以用于研究特种红外源的红外光谱特性,特别是用于军事上红外目标识辨和制导与反制导,以及研究和改进固体推进剂的配方,是一种很有潜力的技术。  相似文献   
96.
Spatial direct numerical simulation (DNS) is used to study the near field dynamics of a buoyant diffusion flame established on a rectangular nozzle with an aspect ratio of 2:1. Combustion is represented by a one-step finite-rate Arrhenius chemistry. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field, which interact with the flame and temporally create localized holes within the reaction zone in which no chemical reactions take place. The interaction between density gradients and gravity plays a major role in the vorticity generation of the buoyant plume. At the downstream of the reactive plume, a more disorganized flow regime characterized by small scales has been observed, following the breakdown of the large vortical structures due to three-dimensional (3D) vortex interactions. Analysis of energy spectra shows that the spatially developing reactive plume has a tendency of transition to turbulence under the effects of combustion-induced buoyancy. The buoyancy effects are found to be very important to the formation, development, interaction, and breakdown of vortices in reactive plumes. In contrast with the relaminarization effects of chemical exothermicity via viscous damping and volumetric expansion on non-buoyant jet diffusion flames, the tendency towards transition to turbulence in reactive plumes is greatly enhanced by the buoyancy effects.  相似文献   
97.
液体火箭发动机中声腔抑制不稳定燃烧的声学分析   总被引:5,自引:0,他引:5       下载免费PDF全文
发展了声腔的分析和数值模型,对液体火箭发动机不稳定燃烧的抑制作用进行了评定,通过迭代计算研究了二维流动和温度分布变化对声腔调 谐和稳定性能的影响,对不同的声腔几何尺寸和温度梯度的稳定性计算结果表明,燃烧带有较大开口面积的声腔会更大程度地改变振荡的空间分布,这种改变而且影响了驱动和抑制燃烧的机理,讨论了在声腔设计安排中正确选择声腔的几何尺寸,且比较了不同长度和不同直径声腔的阻尼特性,通过考察声吸收系统的方法来最优化系统的阻尼,得到了可供设计参考的结论。  相似文献   
98.
高质量的前驱粉是制备高性能Bi-2212线材的基础.本文采用化学燃烧法制备纳米级Bi-2212前驱粉末,分析了Bi-2212纳米粉末的成相过程以及微观形貌,结果表明可以成功制备尺寸小于100 nm的氧化粉末,经过热处理后得到纯的Bi-2212成相粉.与传统共沉淀方法的前驱粉末相比,纳米生粉反应活性更高,Bi-2212成相温度降低,转化效率更高.该方法有利于实现高质量的Bi-2212前驱粉末的批量制备.  相似文献   
99.
Chemical-Looping Combustion (CLC) has emerged in recent years as a very promising combustion technology for power plants and industrial applications with inherent CO2 capture, which circumvent the energy penalty imposed on other competing technologies. The process is based on the use of a metal oxide to transport the oxygen needed for combustion in order to prevent direct contact between the fuel and air. CLC is performed in two interconnected reactors, and the CO2 separation inherent to the process practically eliminates the energy penalty associated with gas separation. The CLC process was initially developed for gaseous fuels, and its application was subsequently extended to solid fuels. The process has been demonstrated in units of different size, from bench scale to MW-scale pilot plants, burning natural gas, syngas, coal and biomass, and using ores and synthetic materials as oxygen-carriers.An overview of the status of the process, starting with the fundamentals and considering the main experimental results and characteristics of process performance, is made both for gaseous and solid fuels. Process modelling of the system for solid and gaseous fuels is also analysed. The main research needs and challenges both for gaseous and solid fuel are highlighted.  相似文献   
100.
We present numerical results on the flame attachment in the downstream vicinity of the co-flow injector lip that separates the reactive fluids at injection. Two stability diagrams show the domains where the flame is anchored, blown off, or extinguished, in terms of separating plate thickness and injection velocities of both fluids. Different anchoring modes—stagnation point counter-flow holding or edge flame anchorage—are described, depending particularly on the plate rim thickness. To cite this article: C. Nicoli et al., C. R. Mecanique 334 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号