首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   16篇
  国内免费   46篇
化学   190篇
晶体学   1篇
力学   90篇
数学   29篇
物理学   246篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   14篇
  2019年   38篇
  2018年   10篇
  2017年   9篇
  2016年   14篇
  2015年   7篇
  2014年   14篇
  2013年   28篇
  2012年   13篇
  2011年   44篇
  2010年   29篇
  2009年   74篇
  2008年   35篇
  2007年   54篇
  2006年   22篇
  2005年   39篇
  2004年   16篇
  2003年   18篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1968年   2篇
排序方式: 共有556条查询结果,搜索用时 31 毫秒
61.
Developing exact models of combustion instabilities is not an easy task to carry out and requires a great deal of time prior to obtaining success. The present study proposes a low-order model for pressure oscillations that does not require any knowledge of the systems, any new physical findings nor intricate details regarding its operating condition. This new approach is obtained using a Modified Van der Pol’s equation (MVDP) which is tuned by use of a Dual Extended Kalman Filter (DKEF) as a recursive estimator with perspectives in control by computer. This phenomenological model is used to predict the pressure signal from a variety of different combustors. Input data were taken from experimental cases such as a Rijke tube, a gas turbine and a liquid-fuel aero-engine combustor. Furthermore, a simulation considering high frequency oscillations to show the capability of the new approach is presented. In all cases, the results demonstrated the feasibility of applying the tractable model MVDP and DKEF running together to investigate pressure oscillations in practical cases.  相似文献   
62.
In this study, lithium-tetraborate (LTB) was synthesized by three methods of high-temperature solid state, wet and combustion reactions. Copper was added to pure LTB by solution assisted method, to improve the thermoluminescence (TL) properties. The pellets of LTB were produced using pressing and sintering operations at 850 °C. The synthesized LTB pellets, exposed to the gamma radiation of 60Co source in the dose range of 5–20Gy and glow curves as well as dose–response diagrams were obtained. Ultimately, the effects of different factors on TL behaviors like dopant, crystallite size and particle morphologies were studied. The results show that between pure samples, LTB which synthesized by combustion method has higher TL sensitivity than those of other methods. However, it was seen a weak glow peak for 5Gy, due to the nanocrystalline structure of LTB. This property led to decrease TL intensity at low-doses and postponed saturation at high-doses. Fading of this sample was also less than others and has relatively better reproducibility. Among LTB:Cu pellets which synthesized by the wet reaction showed the higher TL response than others due to the creation of more traps and luminescence centers and had promising properties in the case of dose response linearity and fading.  相似文献   
63.
Combustion catalysts La0.8Sr0.2MnO3 supported on γ-Al2O3, α-Al2O3, cordierite (2MgO•2Al2O3•5SiO2) and ZrO2 were compared. Further investigation was focused on LSM/ γ-Al2O3 catalyst. It was observed that LSM/γ-Al2O3 catalyst loaded with 20% (mass fraction) LSM (La0.8Sr0.2MnO3 or corresponding oxides), heated at 750℃ or above, perovskite-type oxides were found by XRD examination, whereas, the same catalyst loaded with 10% or less LSM, perovskite oxides were absent, calcination temperature about 750℃ is necessary for the formation of perovskite structure in LSM/γ-Al2O3 catalysts. High activity of complete oxidation of xylen will be obtained when perovskite-type oxides.
Investigation of TPR showed that neat LSM or LSM/γ-Al2O3(20%) was reduced by H2-N2 mixed gas. Two degradation processes took place. In the first, reduced temperature peak was about 350 - 450℃. If reduction ended at 400℃, perovskite structure was retained, which may be due to the reduction of Mn3+to Mn2+ on the surface of LSM only. In the second process, perovskite structure was destroied, and La2O3, Mn2O3, Mn - Sr - O oxides could be obtained, which took place in the temperature range 685 - 750℃ and ended at 800℃. This was proved by TPR experiments (Fig. 3, 5) and XRD patterns (Fig. 4)
Catalysts LSM/γ-Al2O3(10% or 20%) heated at 500℃ have only one TPR peak, i. e. lower temperature peak. This is due to the absence of perovskite-type oxides in the catalysts. However, neat LSM or LSM/γ-Al2O3(20%) heated 750℃ or above, not only the first low temperature TPR peak but also the second peak, which is contributed by the perovskite-type oxides in these catalysts appeared. Therefore, the second TPR peak, i. e. the higher temperatue peak is a characteristic peak for perovskite-type oxides in the reduced process. When LSM/ γ-Al2O3 (10%) catalys is heated at 750℃, no perovskite-type oxides were detected by XRD, and the second reduction peak was absent also in TPR process. \
The order of the second reduction peak temperature(characteristic peak of perovskite - type ox- ides) is: neat LSM(750℃)> LSM/γ-Al2O3 20% (685-698℃) -deposited LSM/γ-Al2O3 (698℃) > LSM/γ-Al2O3 15% (677 - 680℃) >(LSM/γ-AL2O3 10% 620 - 630℃, for Mn - Al - O medium oxides on surface). It is correleted with the increasing of the effect of support sequentially.
When LSM/γ-Al2O3 catalysts were heated at 900℃, more stable phase, spinel MnAl2O4 appeared, which could be proved by TPR of model catalyst MnAl2O4/γ-Al2O3.  相似文献   
64.
PLIF法定量测量甲烷-空气火焰二维温度场分布   总被引:5,自引:0,他引:5       下载免费PDF全文
利用平面激光诱导荧光(PLIF)技术,通过选择适合的OH自由基激励线,定量测量了甲烷-空气燃烧火焰的二维温度场分布。给出炉面中心上方火焰温度随离炉面高度的变化和距炉面12 mm高处沿炉面水平方向变化的实验测量结果并进行了讨论与分析。与利用相干反斯托克斯喇曼散射(CARS)技术进行测温的实验结果相比,该测量的相对不确定度优于5%。  相似文献   
65.
This work presents a study of a magnesium/air combustion process in the context of innovative zero carbon dioxide (CO2) energy carriers for reducing global warming effects. In order to analyze more deeply the confined combustion of magnesium under fluctuating overpressure conditions (0 to 24 hPa) and the generated gaseous by-products, magnesium/air flames have been realized in a combustion chamber with a conical bluff-body as flame holder and different contraction ratios diaphragms at the exit duct. Sieved magnesium samples with two size-fractions were tested: 20–50?µm and 50–70?µm. The gaseous emissions of nitrogen oxides (NOx) and dioxygen (O2) were analyzed with on-line infrared, ultraviolet and paramagnetic analyzers. A flame pulsating behavior was clearly observed from light emission intensity (monitored by a photodiode) and pressure fluctuations (monitored by a pressure sensor); the frequencies obtained ranged between 3 and 10?Hz. The frequency of the pulsation exhibited strong dependence on the geometric configuration of the chamber: a contraction diaphragm divided by two the frequency level of the fluctuations in the studied range of maximum overpressure. Such fluctuations may probably be the consequence of periodic perturbations of the recirculation zone behind the bluff-body. These periodic perturbations are themselves caused by strong periodic overpressure variations due to stiff contraction downstream responding to gas velocity fluctuations. This feed-back-loop mechanism was considered in this study. NOx emissions produced through the thermal pathway were analyzed for equivalence ratios ranging from 0.29 to 1. The representation of NOx versus equivalence ratio exhibited a parabolic shape with a maximum for an equivalence ratio of 0.4. Moreover, NOx emissions of this metal combustor have shown a similar order of magnitude than current internal combustion engines.  相似文献   
66.
The stability of a planar flame front propagating between two parallel adiabatic plates inclined at an arbitrary angle is investigated in the frame of narrow-channel approximation. It is demonstrated that buoyancy forces can suppress the hydrodynamic (Darrieus–Landau) and cellular (diffusive-thermal) instabilities for sufficiently large value of the gravity parameter for the case of downward-propagating flames. The stability analysis reveals that in the case of oscillatory diffusive-thermal instability, the flame front cannot be stabilized in the similar way. Finally, the stability results are compared satisfactorily with unsteady numerical simulations.  相似文献   
67.
The combustion generated soot contamination effect on a single diesel droplet ignition and burning was investigated experimentally for the first time. Diesel droplet flame was used to contaminate the droplet to be investigated prior to ignition. Distinct differences in lifetime and stability of the burning of the neat and contaminated droplet samples were observed in their heating, boiling and disruptive phases. For a soot-contaminated droplet surface, the evaporation rate became weaker as a result of slower mass transfer thus contracted the flame formation. Contrary to the burning rate enhancement of droplet with stable and uniform suspension of particles observed by other researchers, the slightest contamination of soot particles in a fuel droplet surface can significantly reduce the burning rate. Denser agglomeration of soot can form a shell on the droplet surface which blocks the flow of gas escaping through the surface thus distort the droplet even further. At late combustion stage, bubbles are observed to rapture on the surface of the soot-contaminated droplet. Strong ejections of volatile liquid and vapour that would explode shortly after parting from the droplet are observed. It seems that the explosion and burning of ejected mixture have little interactions with the enveloped flame surrounding the primary droplet. Enhanced visualisation of droplet liquid-phase has clearly indicated the cause of declining trend in the burning rate and flame stand-off ratio of soot-contaminated diesel droplet. These insights are of significance for understanding the effect of fuel droplet contamination by combustion generated soot particles.  相似文献   
68.
Combustion instabilities depend on a variety of parameters and operating conditions. It is known, especially in the field of liquid rocket propulsion, that the pressure loss of an injector has an effect on its dynamics and on the coupling between the combustion chamber and the fuel manifold. However, its influence is not well documented in the technical literature dealing with gas turbine combustion dynamics. Effects of changes in this key design parameter are investigated in the present article by testing different swirlers at constant thermal power on a broad range of injection velocities in a well controlled laboratory scale single injector swirled combustor using liquid fuel. The objective is to study the impact of injection pressure losses on the occurrence and level of combustion instabilities by making use of a set of injectors having nearly the same outlet velocity profiles, the same swirl number and that establish flames that are essentially identical in shape. It is found that combustion oscillations appear on a wider range of operating conditions for injectors with the highest pressure loss, but that the pressure fluctuations caused by thermoacoustic oscillations are greatest when the injector head loss is low. Four types of instabilities coupled by two modes may be distinguished: the first group features a lower frequency, arises when the injector pressure loss is low and corresponds to a weakly coupled chamber-plenum mode. The second group appears in the form of a constant amplitude limit cycle, or as bursts at a slightly higher frequency and is coupled by a chamber mode. Spontaneous switching between these two types of instabilities is also observed in a narrow domain.  相似文献   
69.
We present the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for in situ, non-intrusive and quantitative CO2 concentration measurements in flames. Dispersion spectroscopy retrieves gas properties by measuring the refractive index in the vicinity of a molecular resonance. The HPSDS scheme features a significant diagnostic advantage of the intrinsic immunity to laser power fluctuations caused by beam steering, thermal radiation and soot scattering in combustion environments, and thus no extra calibration process is required. In this work, we described the spectroscopic fundamentals for measuring heterodyne phase signals in flames. As a proof of principle, we used a mid-infrared interband cascade laser (ICL) near 4183?nm to exploit the strong CO2 transitions in the R-branch of the v3 fundamental band. The HPSDS signals of four CO2 lines, R(76), R(78), R(80) and R(82), were measured in CH4/air flames to obtain CO2 concentrations at different equivalence ratios (Φ?=?0.8–1.2), yielding a good agreement with the simultaneous laser absorption measurements using the same ICL. With its immunity to laser power fluctuations verified experimentally, the HPSDS sensor was successfully implemented to measure CO2 concentrations in C2H4/air sooting flames (Φ?=?1.78–2.38). Laser dispersion spectroscopy proves to be a promising and alternative diagnostic tool for combustion measurements.  相似文献   
70.
Fluorescence interference in Raman spectrum is a big barrier for rapid and precise analysis of coal structures by Raman spectroscopy. Dealing with fluorescence interference suitably is one of the key tasks before efficient application of Raman spectroscopy in coal assessment. In this study, Raman spectra and coal combustion characteristics of 32 kinds of Chinese coals were respectively obtained in a micro-Raman spectrometer and Thermal Gravimetric Analyzer. The degree of fluorescence interference in Raman spectrum was firstly defined and quantified as the drift coefficient α using a simple method without curve-fitting the spectrum. The correlations between the degree of fluorescence interference and coal property, coal combustion characteristics were set up and multivariable analysis was done. The results indicate that the degree of fluorescence interference is well related to the coal structures, and it is synthetically determined by volatile, moisture and ash content in coal. With the increase of volatile, moisture content in coal, the fluorescence interference increases continuously, and it can be reduced but not eliminated by drying the moisture in coals. Significant mathematical relations between the drift coefficient α and volatile, moisture content, coal combustion characteristic temperatures have been found. Coal with more evident fluorescence interference in Raman spectrum usually has lower degree of coalification, more polar functional groups, and burns at a lower temperature. The drift coefficient α can act as an efficient probe for coal property and coal combustion characteristics. This study provided a new and simple approach for evaluating coal property and coal combustion characteristics by fluorescence interference in Raman spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号