首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   76篇
  国内免费   52篇
化学   417篇
晶体学   23篇
力学   104篇
综合类   3篇
数学   36篇
物理学   473篇
  2024年   3篇
  2023年   11篇
  2022年   27篇
  2021年   18篇
  2020年   25篇
  2019年   26篇
  2018年   19篇
  2017年   29篇
  2016年   27篇
  2015年   39篇
  2014年   67篇
  2013年   72篇
  2012年   58篇
  2011年   84篇
  2010年   40篇
  2009年   61篇
  2008年   32篇
  2007年   69篇
  2006年   50篇
  2005年   38篇
  2004年   35篇
  2003年   40篇
  2002年   26篇
  2001年   21篇
  2000年   14篇
  1999年   14篇
  1998年   15篇
  1997年   6篇
  1996年   20篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1980年   1篇
排序方式: 共有1056条查询结果,搜索用时 281 毫秒
91.
In order to improve the precision of quasi-dimensional combustion model for predicting diesel engine performance and promote the real time operating performance of the simulation model, a new phase-divided spray mixing model is proposed and the quasi-dimensional combustion model of diesel engine working process is developed. The software MATLAB/Simulink is utilized to build the quasi-dimensional combustion model of diesel engine working process, and the performance for diesel engine is simulated. The simulation results agree with experimental data quite well. The comparisons between them show that the relative error of power and brake specific fuel consumption is less than 2.8% and the relative error of nitric oxide and soot emissions is less than 9.1%. By utilization of this simulation model with personal computer, the average computational time for one diesel engine working process is 36 s, which presents good real time operating performance of the model. At the same time, the influence of parameters in calculation of air entrainment on prediction precision of diesel engine’s simulation model is analyzed.  相似文献   
92.
Hypersonic aerospace vehicles are exposed to extreme flight conditions with heavy contour loads during their mission. Especially at ridges and sharp corners, the wall heat flux and pressure may cause serious damage to the body. Sometimes, the surface material cannot resist the high loading and fails completely. In this work the laminar hypersonic flow over forward and backward facing steps is investigated by CFD techniques and the results are compared with experimental data. The selected flow conditions correspond to cold hypersonic flow according to the availability of experimental data. The Navier-Stokes equations in the high temperature gas approximation of a thermally perfect gas in local equilibrium serve as the model for the physical problem. A multiblock finite-volume method is used to discretize consistently all spatial derivatives appearing in the balance equations. A second order in space Godunov-type method is utilized for the non-diffusive part of the governing equations whereas centered differences are used for the diffusive part. Time integration is performed by a second order implicit scheme. In each time step, the resulting nonlinear system of equations is solved by Newton's method employing a relaxation scheme based on conjugate gradients for the linear equation system. The results obtained permit a close insight into the physics of the flow problems under consideration and by this provide valuable information for construction concepts of hypersonic vehicles. Besides a careful comparison of the numerical results with experimental data, numerical aspects like the grid influence are addressed. Received 9 November 1998 / Accepted 2 December 1999  相似文献   
93.
In the framework of the activities of the Community Reference Laboratory (CRL) for residues at the Istituto Superiore di Sanità (ISS) of Rome, a number of proficiency tests were performed in order to assess and improve, wherever necessary, the quality of regulatory residue analysis within the EU. In this context, a pilot study was undertaken with the purpose of ascertaining the feasibility of a project for the certification of a new reference material for trace elements in bovine muscle. On behalf of the ISS, approximately 70 kg of bovine muscle, collected at a slaughterhouse in Geel (Belgium), were freeze-dried, homogenized, stabilized and bottled under argon atmosphere by the Institute for Reference Materials and Measurements, Joint Research Centre, European Commission (IRMM-JRC-EC). Preliminary analyses were carried out with Quadrupole (Q) and High Resolution (HR) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate the content of As, Cd, Cu and Pb, whereas the Flow Injection Mercury System (FIMS) was used to quantify Hg. Digestion of the matrix was achieved by acid-assisted microwave irradiation. The mean values of experimentally obtained data were the following (in nanograms per gram): As, 24.2±1.2; Cd, 5.48±0.29; Cu, 4765±95; Hg, 3.37±0.73; and Pb, 184±7. Subsequently, 16 National Reference Laboratories (NRLs) for residues in the Member States plus the Norwegian one and eight Italian public laboratories were accepted to participate in the project and received one bottle of the freeze-dried bovine muscle. The laboratories were requested to perform three different analytical runs (in three different days), each consisting of three individual measurements. Preliminary results showed good agreement and fair evidence for homogeneity of the entire mass, thus setting the stage for the future certification of this candidate CRM.  相似文献   
94.
A survey of the literature is made for the XPS analysis of food products (mainly spray‐dried powders, which reveal a considerable surface enrichment in lipids) and of microorganisms and related systems (extracellular polymer substances and biofilms). This survey is used as a background for discussions and recommendations regarding methodology. Sample preparation methods reviewed are freeze drying, analysis of frozen hydrated specimens and adsorption of surface‐active biocompounds on model substrates. Peak decomposition is a way to increase the wealth of information provided by the XPS spectra. It should be performed after a check that sample charge stabilization is satisfactory. Moreover, ensuring the precision needed to make comparisons within sets of samples may involve a trade‐off between imposing constraints and generating information. The examination of correlations between spectral data in the light of chemical guidelines is useful to validate or improve peak decomposition and component assignment, and may also upgrade the chemical information regarding speciation. Further upgrading may be achieved by expressing marker XPS data in terms of concentrations of compounds of interest. Different methods of computation are discussed, providing a composition in terms of ingredients, classes of biochemical compounds, or various organic and inorganic compounds. As an alternative or complement to this deterministic approach, multivariate analysis of suitable spectral windows provides spectral components, which may be used for comparing samples, and which may have a direct chemical relevance or be used to identify features of interest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
95.
The high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel has been investigated at 900 °C in air under cyclic heating and cooling conditions for 50 cycles. The kinetics of oxidation of coated and bare boiler steel has been established with the help of weight change measurements. It was observed that all the coated and bare steels obeyed parabolic rate law of oxidation. X-ray diffraction, FE-SEM/EDAX and X-ray mapping techniques were used to analyse the oxidation products of the coated and uncoated boiler steel. The uncoated steel suffered corrosion in the form of intense spalling and peeling of its oxide scale, which was perhaps due to the formation of unprotective Fe2O3 oxide scale. Both the coatings showed better resistance to the air oxidation as compared to the uncoated steel. The Ni-50Cr coating was found to be more protective than the Ni-20Cr-coated steel. The formation of oxides and spinels of nickel and chromium may be contributing to the development of air oxidation resistance in the coatings.  相似文献   
96.
By focusing on cold-crystallized poly(ether diphenyl ether metaketone) (PEKm), a more in-depth understanding of the nature of the crystalline morphology has been gained, which may lead to thorough mechanisms for interpreting the observed thermal behavior in PEKm. Apparently, cold-crystallized PEKm containing initially only a single P1 crystal can exhibit dual melting peaks (300 and 320 °C), with the second high-melting peak corresponding to the P2 crystal that was subsequently formed via P1 melting/repacking during the scan. However, dual morphism (preexisting P1 and P2 crystals) could be intentionally introduced into PEKm if it was cold-crystallized at temperature schemes of decreasing order. The P1 and P2 crystals possess the same unit cells (orthorhombic) and thus they differ only in the lamellae populations. The dual lamellar morphism in this PEKm sample also exhibited similar dual melting peaks during scanning, which correspond to melting of the individual P1 and P2 in a sequential order. This study has thus provided important clues in and shed new light on the interpretation of multiple melting with respect to polymorphism in polymers. Relationships between the low-melting and high-melting lamellae in cold-crystallized polyketone polymer have been thoroughly explored. Received: 9 January 2001/Accepted: 3 February 2001  相似文献   
97.
《Analytica chimica acta》2002,460(1):111-122
Direct cold vapour generation from aqueous slurries of environmental (marine sediment, soil, coal) and biological (human hair, seafood) samples have been developed using a batch mode generation system coupled with electrothermal atomic absorption spectroscopy. The effects of several variables affecting the cold vapour generation efficiency from solid particles (hydrochloric acid and sodium tetrahydroborate concentrations, argon flow rate, acid solution volume and mean particle size) have been evaluated using a Plackett-Burman experimental design. In addition, variables affecting cold vapour trapping and atomisation efficiency on Ir-treated graphite tubes (trapping and atomisation temperatures and trapping time) have been also investigated. Atomisation and trapping temperatures, trapping time and hydrochloric acid concentration were the significant variables. The 22+star and 23+star central composite designs have been used to obtain optimum values of the variables selected. The accuracy of methods have been verified by using several certified reference materials (PACS-1, GBW-07410, NIST-1632c, CRM-397 and DORM-2). A characteristic mass of 390 pg were achieved. The detection limits of methods were in the range of 40-600 ng g−1. A particle size less than 50 μm is adequate to obtain total cold vapour generation of Hg content in the aqueous slurry particles.  相似文献   
98.
双侧进气突扩燃烧室内液雾燃烧的数值模拟   总被引:1,自引:0,他引:1  
本文采用全双流体模型对部分切向进气管式双侧进气突扩燃烧室内的液雾燃烧过程进行了数值模拟,将液雾群按初始尺寸分组,数值模拟结果表明不同尺寸液雾的蒸发及燃烧过程显著不同,小尺寸的液雾是先蒸发后燃烧,而较大尺寸的液雾则是边蒸发边燃烧.模拟结果还表明,部分切向进气方式有利于在燃烧室的头部产生大面积的中心回流区,该回流区的存在有利于加强混合及火焰稳定.  相似文献   
99.
动态冷原子吸收法快速测定地球化学样品中微量汞   总被引:3,自引:0,他引:3  
本文介绍了动态冷原子吸收法快速测定地球化学样品中微量汞的方法。本文研究采用了新型的汞蒸气发生器,并对气泡的干扰进行了研究。线性范围为0.2-12ng/mL,标准回收率为97%-106%,相对标准偏差为3.6%,相关系数为0.9997,试验结果表明此方法简便、快速、准确。  相似文献   
100.
A three-dimensional simulation study is performed for investigating the hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-fluidized catalytic cracking (FCC) riser of rectangular cross-section. Rectangular nozzles with a fixed aspect ratio but different fan angles are used for the spray feeding. While our numerical simulation reveals a generic three-phase flow structure with strong three-phase interactions under rapid vaporization of sprays, this paper tends to focus on the study of the effect of nozzle fan angle on the spray coverage as well as vapor flux distribution by spray vaporization inside the riser flow. The gas-solid (air-FCC) flow is simulated using the multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the Lagrangian trajectory method, with a strong two-way coupling between the Eulerian gas-solid flow and the Lagrangian trajectories of spray. Our simulation shows that the spray coverage is basically dominated by the spray fan angle. The spray fan angle has a very minor effect on spray penetration. The spray vaporization flux per unit area of spray coverage is highly non-linearly distributed along the spray penetration. The convection of gas-solid flow in a riser leads to a significant downward deviation of vapor generated by droplet vaporization, causing a strong recirculating wake region in the immediate downstream area of the spray.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号