首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   60篇
  国内免费   209篇
化学   2312篇
晶体学   24篇
力学   9篇
综合类   5篇
物理学   284篇
  2024年   6篇
  2023年   64篇
  2022年   21篇
  2021年   24篇
  2020年   39篇
  2019年   81篇
  2018年   34篇
  2017年   86篇
  2016年   50篇
  2015年   61篇
  2014年   60篇
  2013年   84篇
  2012年   279篇
  2011年   125篇
  2010年   100篇
  2009年   113篇
  2008年   152篇
  2007年   172篇
  2006年   127篇
  2005年   121篇
  2004年   124篇
  2003年   69篇
  2002年   79篇
  2001年   81篇
  2000年   69篇
  1999年   66篇
  1998年   47篇
  1997年   39篇
  1996年   32篇
  1995年   33篇
  1994年   33篇
  1993年   26篇
  1992年   18篇
  1991年   36篇
  1990年   24篇
  1989年   22篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1982年   2篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有2634条查询结果,搜索用时 78 毫秒
91.
92.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   
93.
A three‐coordinate low‐spin cobalt(I) complex generated using a pincer ligand is presented. Since an empty orbital is sterically exposed at the site trans to the N donor of an acridane moiety, the cobalt(I) center accepts the coordination of various donors such as H2 and PhSiH3 revealing σ‐complex formation. At this low‐spin cobalt(I) site, homolysis of H–H and Si?H bonds preferentially occurs via bimolecular hydrogen atom transfer instead of two‐electron oxidative addition. When the resulting CoII–H species was exposed to N2, H2 evolution readily occurs at ambient conditions. These results suggest single‐electron processes are favored at the structurally rigidified cobalt center.  相似文献   
94.
This paper describes the structure and magnetic properties of a novel cobalt 1-aminoethylidenediphosphonate compound, namely Co3{CH3C(NH3)(PO3H)(PO3)}2{CH3C(NH3)(PO3H)2}2(H2O)4·2H2O (1). The structure contains a trimer unit of Co3{CH3C(NH3)(PO3H)(PO3)}2 in which two equivalent phosphonate ligands chelate and bridge the three cobalt ions. Each trimer unit is further linked to its four equivalent neighbors through corner-sharing of CoO6 octahedra and CPO3 tetrahedra, forming a two-dimensional layer in the bc-plane which contains 12-membered rings. These layers are connected to each other by extensive hydrogen bonds. Magnetic studies show that weak antiferromagnetic interactions are mediated between the cobalt ions. Crystal data for 1: monoclinic, space group C2/c, a=27.727(4), b=7.1091(11), , β=118.488(3), , Z=2.  相似文献   
95.
Interactions between naphthenic acids and divalent metal cations across model oil–alkaline water interfaces were investigated by correlating changes in dynamic interfacial tension (IFT), to plausible reaction mechanisms. The measurements were carried out by using a CAM 200 optical instrument, which is based on the pendant drop technique. The naphthenic acids used were synthesised model compounds as well as commercial acid mixtures from crude distillation and extracted acid fractions from a North Sea crude oil. The divalent cations involved Ca2+, Mg2+, Sr2+, and Ba2+, which are all common in co-produced formation water and naphthenate deposits. The results show that the dynamic IFT strongly depends on naphthenic acid structure, type of divalent cation, and the concentration of the compounds as well as the pH of the aqueous phase. Introducing divalent cations to systems involving saturated naphthenic acids caused mostly a permanent lowering of the IFT. The decline in IFT is due to electrostatic attraction forces across the interface between the cations in the aqueous phase and the carboxylic-groups at the o/w interface, which cause a higher interfacial density of naphthenic acid monomers. The permanent lowering in IFT is likely due to formation of positively charged monoacid complexes, which possess high interfacial activity. On the other hand, in the case of the aromatic model compounds, the cations affected the IFT differently. This is mainly discussed in light of degree of cation hydration and steric conditions. Various oil-soluble non-ionic surfactant mixtures were also introduced to systems involving a model naphthenic acid and Ca2+ in order to investigate how the interfacial competition affected the local interactions. Based on the behaviour of dynamic IFT, probable inhibition mechanisms are discussed.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
96.
Chelating or metallacycle-forming substrates are very useful for directing organometallic reactions. This review covers the more recent research that has been carried out in the authors' laboratory. Rhodium(I)- and (III)-catalysed reactions of C---C coupling of butadiene with N-allylamides or N-alkylbutenamides are described. These reactions are controlled by the size and strength of the chelate ring formed by double-bond insertion into the crotyl-rhodium bond (formed from butadiene) and their regioselectivity can change with the oxidation state of the metal. Rhodium(I)-catalysed reactions of butadiene with enamides are also chelation controlled and lead to different products, depending on the substituents at nitrogen. Cobalt(II) metallacycles have been utilized for promoting some organic reactions. It has been shown that alkenes can be catalytically incorporated into cobaltacyclopentadiene rings, that spirocycles can be obtained from diynes, carbon monoxide and acrylic esters and that a Pauson-Khand-type reaction can be combined with a Michael-type reaction to prepare catalytically new cyclopentenones. The use of palladacycles, derived from norbornene insertion into aryl-palladium bonds, followed by cyclization, has allowed the selective functionalization of either end of the metallacycle and the formation of condensed rings. Conversion of a palladium(II) into a palladium(IV) metallacycle, and catalytic processes involving these intermediates, have been achieved. The formation of alkylaromatic palladacycles has also been exploited for the selective meta functionalization of the aromatic moiety by means of alkyl groups, accompanied by expulsion of the norbornene molecule.  相似文献   
97.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   
98.
《Electroanalysis》2003,15(9):779-785
We have investigated the electrocatalytic activity of cobalt tetra‐aminophthalocyanine (CoTAPc) for the one‐electron oxidation of thiols of various sizes, namely 2‐mercaptoethanol, 2‐mercaptoethanesulfonic acid, reduced glutathione and L ‐cysteine, using adsorbed monomeric CoTAPc and electropolymerized poly‐CoTAPc films of different thickness on a vitreous carbon electrode. Our results show that the electrocatalytic activity of poly‐CoTAPc films towards the oxidation of the thiols increases slightly with the thickness of the film, but remains similar to that of the adsorbed monomeric CoTAPc. The higher stability of the electropolymerized poly‐CoTAPc films makes them attractive for applications in the activation and/or the detection of thiols. We have assessed this approach by designing ultra‐micro‐carbon‐fiber electrodes, coated with poly‐CoTAPc, and combining their use with different electrochemical techniques (cyclic voltammetry, differential pulse voltammetry and differential normal pulse amperometry) for the electroanalysis of the examined thiols.  相似文献   
99.
A comparative study on the oxidation and charge compensation in the AxCoO2−δ systems, A=Na (x=0.75, 0.47, 0.36, 0.12) and Li (x=1, 0.49, 0.05), using X-ray absorption spectroscopy at O 1s and Co 2p edges is reported. Both the O 1s and Co 2p XANES results show that upon removal of alkali metal from AxCoO2−δ the valence of cobalt increases more in LixCoO2−δ than in NaxCoO2−δ. In addition, the data of O 1s XANES indicate that charge compensation by oxygen is more pronounced in NaxCoO2−δ than in LixCoO2−δ.  相似文献   
100.
Iron(II) and cobalt(II) complexes ( 7 ‐ 15 ) based on new aldimine 2, 6‐bis[(imino)methyl]pyridine ( 1 , 2 , 4 , 6 ) and ketimine (2, 6‐bis[(imino)ethyl]pyridine ( 3 , 5 ) ligands with bulky chiral aliphatic or aromatic terminal groups have been prepared and characterized by 1H NMR, 13C NMR, IR‐, mass spectroscopy (EI), and elemental analysis. The complex [CoCl2(BBoMP)]·1/2 CHCl3 ( 13 ) (BBoMP: 2, 6‐bis{(R‐(+)‐(bornylimino)‐methyl}pyridine) crystallizes in monoclinic space group P21 with cell dimensions: a = 7.6603(11) Å, b = 28.3153(14) Å, c = 13.537(2) Å, V = 2908.1(6) Å3, Z = 4. The coordination sphere around Co is distorted trigonal bipyramidal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号