首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8581篇
  免费   738篇
  国内免费   1042篇
化学   5172篇
晶体学   186篇
力学   69篇
综合类   44篇
数学   189篇
物理学   4701篇
  2023年   35篇
  2022年   93篇
  2021年   91篇
  2020年   89篇
  2019年   107篇
  2018年   156篇
  2017年   162篇
  2016年   195篇
  2015年   162篇
  2014年   237篇
  2013年   759篇
  2012年   378篇
  2011年   402篇
  2010年   329篇
  2009年   518篇
  2008年   500篇
  2007年   560篇
  2006年   533篇
  2005年   457篇
  2004年   421篇
  2003年   409篇
  2002年   373篇
  2001年   340篇
  2000年   325篇
  1999年   320篇
  1998年   270篇
  1997年   235篇
  1996年   247篇
  1995年   260篇
  1994年   219篇
  1993年   177篇
  1992年   235篇
  1991年   130篇
  1990年   87篇
  1989年   80篇
  1988年   85篇
  1987年   58篇
  1986年   41篇
  1985年   36篇
  1984年   37篇
  1983年   29篇
  1982年   30篇
  1981年   19篇
  1980年   23篇
  1979年   25篇
  1978年   12篇
  1976年   18篇
  1975年   13篇
  1974年   14篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL−1 each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.  相似文献   
992.
Small peptides in serum are potential biomarkers for the diagnosis of cancer and other diseases. The identification of peptide biomarkers in human plasma/serum has become an area of high interest in medical research. However, the direct analysis of peptides in serum samples using mass spectrometry is challenging due to the low concentration of peptides and the high abundance of high-molecular-weight proteins in serum, the latter of which causes severe signal suppression. Herein, we reported that porous semiconductor-noble metal hybrid nanostructures can both eliminate the interference from large proteins in serum samples and significantly enhance the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) yields of peptides captured on the nanostructure. Serum peptide fingerprints with high fidelity can be acquired rapidly, and successful discrimination of colorectal cancer patients based on peptide fingerprints is demonstrated.  相似文献   
993.
Magnetic exchange is an essential feature of transition‐metal nanomagnets because it combines the relatively low spin‐only moments of several ions into a “giant spin” ground state, which can make slow magnetic relaxation very favorable in an axially anisotropic environment. In contrast, most of the early research on lanthanide‐based complexes focused on single‐ion magnets, where the required large moment is generated by the unquenched orbital contribution (which is parallel to the spin in heavy rare earths). With their unfilled 5f electronic shell being on the verge between localization and itinerancy, actinides are expected to combine the best of both 3d and 4f metals in terms of exchange and anisotropy, and are therefore under consideration as potential building blocks for the next generation of single‐molecule magnets. In this Perspective, a review of the recent development in this field is given, and some discrepancies between the spectroscopic and magnetic data are discussed. © 2014 European Commission. International Journal of Quantum Chemistry published by Wiley Periodicals, Inc.  相似文献   
994.
Intramolecular interactions between fragments of L ‐phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L ‐phenylalanine, benzene and L ‐alanine are studied using density functional theory methods. While fully resolved experimental PES of L ‐phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e1g and 1a2u orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L ‐phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14‐20 eV, rather than outside of this region. This study presents a competent orbital based fragments‐in‐molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D‐PDF technique. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
995.
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1‐(β‐D ‐ribofuranosyl)‐2‐pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1‐(β‐D ‐ribofuranosyl)‐5‐methyl‐2‐pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital‐based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
996.
Laser Ablation Molecular Isotopic Spectrometry (LAMIS) was recently reported for optical isotopic analysis of condensed samples in ambient air and at ambient pressure. LAMIS utilizes molecular emissions which exhibit larger isotopic spectral shits than in atomic transitions. For boron monoxide 10BO and 11BO, the isotopic shifts extend from 114 cm−1 (0.74 nm) to 145–238 cm−1 (5–8 nm) at the B2Σ+ (v = 0) → X2Σ+ (v = 2) and A2Πi (v = 0) → X2Σ+ (v = 3) transitions, respectively. These molecular isotopic shifts are over two orders of magnitude larger than the maximum isotopic shift of approximately 0.6 cm−1 in atomic boron. This paper describes how boron isotope abundance can be quantitatively determined using LAMIS and how atomic, ionic, and molecular optical emission develops in a plasma emanating from laser ablation of solid samples with various boron isotopic composition. We demonstrate that requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric analysis of spectra. Sensitivity can be improved by using a second slightly delayed laser pulse arriving into an expanding plume created by the first ablation pulse.  相似文献   
997.
Using the U(4) algebraic model, in this work we report a study of the vibrational spectra of SO2, H2018 and D2O16. The inclusion of intermode couplings in algebraic models has been stated to give a deep insight into detailed spectroscopy for these bent XY2 molecules. Improved set of algebraic parameters has been reported to provide improved RMS deviations for these molecules.  相似文献   
998.
The Raman spectroscopic data in the range 500-1800 cm−1 for a series of 15 rare earth double-deckers with tervalent rare earths MIII[Pc(MeOPhO)8]2 (M = Y, La, …, Lu, except Ce, Pr and Pm), reduced state HPr[Pc(MeOPhO)8]2 and intermediate-valent cerium Ce[Pc(MeOPhO)8]2 have been collected using laser excitation source emitting at 632.8 nm. With excitation at 632.8 nm, which is in close resonance with the main Q absorption band of the phthalocyanine ligand, typical Raman marker bands of the monoanion radical [Pc(MeOPhO)8] were observed at 1500-1528 cm−1 as very strong bands resulting from the coupling of pyrrole CC and aza CN stretchings. For Ce[Pc(MeOPhO)8]2 and HPr[Pc(MeOPhO)8]2, a very strong band at 1499 cm−1 with contributions from both pyrrole CC and aza CN stretchings and also isoindole stretching was the marker Raman band of [Pc(MeOPhO)8]2−. In addition, the influence of ionic radius of the rare earth metal and substituent species on the Raman scatting characteristics of sandwich-type compounds has also been tentatively studied.  相似文献   
999.
Raman experiments of formamide and zinc chloride solutions in a wide concentration range (0.1-5.0 mol kg−1) have been carried out. The spectral changes were interpreted on three different ways: (i) the rupture of the H-bonds of FA was evidenced by the trend observed in the νCO, δHNH and restricted (translation or libration) modes; (ii) the appearance of a new band in the νCN region (∼1338 cm−1) was assigned to FA coordinated to Zn (II) through nitrogen atom; (iii) the electronic delocalization in the FA structure upon complexation provided the appearance of new features in the δCH and νCH regions. The quantitative treatment performed at the νCN region of FA allowed the determination of an average number of 3 FA molecules per Zn (II) in the first solvation shell. This value is supported by the appearance of features assigned to ZnCl+ and ZnCl2 entities that also occupy vertices of the tetrahedron at higher salt concentrations. The present study may be useful for a better understanding on electrochemical processes employed in the production of dendritic zinc films as well as FA hydrolysis catalyzed by this metal.  相似文献   
1000.
In view of existing contradictory assignments of the symmetrical stretching vibrations associated with the formal C-C and C-F bonds of trans/cis oxalyl fluoride, an additional theoretical analysis of the corresponding calculated wavenumbers was preformed on trans-C2O2F2 and cis-C2O2F2 based on previously calculated ab initio scaled force fields at the HF/6-31G computational level and new force fields calculated at the MP2/aug-cc-pVTZ level. This novel analysis included computational data from the isotopic shifts brought about by incorporating 13C and 14C atoms into the structure. A detailed examination of the calculated wavenumbers made it possible to validate the assignments of the ν2 and ν3 wavenumbers in the trans-C2O2F2 and cis-C2O2F2 molecules as the formal C-C bond stretching and the formal C-F bond symmetrical stretching vibrations, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号