首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   81篇
  国内免费   289篇
化学   1644篇
晶体学   13篇
力学   8篇
综合类   5篇
数学   1篇
物理学   191篇
  2023年   20篇
  2022年   32篇
  2021年   50篇
  2020年   70篇
  2019年   44篇
  2018年   43篇
  2017年   62篇
  2016年   83篇
  2015年   61篇
  2014年   66篇
  2013年   137篇
  2012年   73篇
  2011年   107篇
  2010年   103篇
  2009年   116篇
  2008年   137篇
  2007年   107篇
  2006年   83篇
  2005年   102篇
  2004年   79篇
  2003年   48篇
  2002年   42篇
  2001年   22篇
  2000年   26篇
  1999年   18篇
  1998年   14篇
  1997年   24篇
  1996年   14篇
  1995年   12篇
  1994年   14篇
  1993年   9篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   4篇
  1977年   1篇
排序方式: 共有1862条查询结果,搜索用时 46 毫秒
111.
The main objective of the present work was to formulate and optimize a microparticulate sustained release drug delivery system of isoniazid by using a novel, alkaline extracted ispaghula husk as a polymer. Isoniazid microspheres of alkaline extracted ispaghula husk were prepared by emulsification internal ionic gelation method. Results of preliminary trials indicated that the polymer concentration, cross-linking agent and stirring speed had a noticeable effect on size and surface morphology. A four-factor three-level Box-Behnken design was employed to study the effect of independent variables on dependent variables. The particle size and entrapment efficiency varied from 30.75 to 61.78 µm and 62.27% to 85.80% respectively, depending on the polymer concentration, concentration of cross-linker and stirring speed. Optimized microspheres batch based on point prediction tool of design software exhibited 83.43% drug entrapment and 51.53 µm particle size with 97.80% and 96.37% validity, respectively at the following conditions: sodium alginate (3.55% w/v), alkaline extracted ispaghula husk (3.60% w/v), cross-linker concentration (7.82% w/v), and stirring speed (1200 rpm). The optimized formulation showed controlled drug release for more than 12 hours. The drug release followed Higuchi kinetics via a non-Fickian diffusion.  相似文献   
112.
CdS nanoparticles were formed on the surface of silica microspheres by the improved layer‐by‐layer self‐assembled technique. High‐resolution electron microscope (HRTEM) image and energy dispersive x‐ray analysis (EDX) confirmed formation of a quasi‐continuous CdS nanoparticles film on the silica microspheres. The results of UV‐vis and fluorescence spectra display that the spherical silica surface has a great effect on the photoluminescence of the loaded CdS nanoparticles. In contrast to the CdS nanoparticles powder, the composite can exhibit the emission ascribed to the band gap transition when the CdS nanoparticles film is relatively thick. This phenomenon is probably due to an enhancement of the crystallinity of CdS nanoparticles induced by the silica spheres.  相似文献   
113.
Mucoadhesive chitosan microspheres of acyclovir were prepared to prolong the gastric residence time using simple emulsification phase separation technique. The particle morphology of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (31.62 ± 4.64). The entrapment efficiency was found to be in the range of 40.24 to 67.29%. The concentration of the glutaraldehyde (25%v/v) as a cross-linker 2 ml and drug polymer ratio of 1:2 caused an increase in the entrapment efficiency and the extent of drug release. The optimized chitosan microspheres were found to possess good bioadhesion (79.89 ± 1.01%). The gamma-scintigraphy study showed the gastric residence time of more than 6 hours which revealed that optimized formulation could be a good choice for gastroretentive systems.  相似文献   
114.
The unique features of high porosity, shape selectivity, and multiple active sites make metal–organic frameworks (MOFs) promising as novel stationary phases for high‐performance liquid chromatography (HPLC). However, the wide particle size distribution and irregular shape of conventional MOFs lead to lower column efficiency of such MOF‐packed columns. Herein, the fabrication of monodisperse MOF@SiO2 core–shell microspheres as the stationary phase for HPLC to overcome the above‐mentioned problems is reported. Zeolitic imidazolate framework 8 (ZIF‐8) was used as an example of MOFs due to its permanent porosity, uniform pore size, and exceptional chemical stability. Unique carboxyl‐modified silica spheres were used as the support to grow the ZIF‐8 shell. The fabricated monodisperse ZIF‐8@SiO2 packed columns (5 cm long × 4.6 mm i.d.) show high column efficiency (23 000 plates m?1 for bisphenol A) for the HPLC separation of endocrine‐disrupting chemicals (bisphenol A, β‐estradiol, and p‐(tert‐octyl)phenol) and pesticides (thiamethoxam, hexaflumuron, chlorantraniliprole, and pymetrozine) within 7 min with good relative standard deviations for 11 replicate separations of the analytes (0.01–0.39, 0.65–1.7, 0.70–1.3, and 0.17–0.91 % for retention time, peak area, peak height, and half peak width, respectively). The ZIF‐8@SiO2 microspheres combine the advantages of the good column packing properties of the uniform monodisperse silica microspheres and the separation ability of the ZIF‐8 crystals.  相似文献   
115.
以三羟甲基丙烷三丙烯酸酯(TMPTA)-苯乙烯(St)为单体,偶氮二异丁腈(AIBN)为自由基引发剂,通过在乙醇中的沉淀聚合可制得高交联单分散P(TMPTA-St)聚合物微球.对单体转化率,微球以及可溶性低聚物的产率进行了测试.结果表明,使用10 wt%至60 wt%的交联剂TMPTA进行聚合可获得单分散微球,产率在50%左右.增加TMPTA用量可提高微球产率和单体转化率.增加引发剂AIBN用量对提高微球产率也有促进作用,但同时可溶性低聚物产率也增加.向乙醇中加入水作为反应介质结合适当增加AIBN用量可使单体转化率达到98%,微球产率高于90%.对实验结果进行了解释,对聚合机理进行了讨论.  相似文献   
116.
合成了一种含有谷氨酸残基的长链烷基表面活性剂Nα-十二烷基-L-谷氨酸. 研究了表面活性剂所形成的胶束体系在较温和条件下催化纤维素模型物甲基-β-D-纤维二糖苷(MCB)水解的反应. 研究表明此功能胶束对MCB水解为葡萄糖的反应在较低的温度(90℃)下就表现出明显的催化作用, 在pH 5.0附近具有最佳的催化水解效果.根据胶束催化的相分离模型获得MCB水解的一级反应速率常数(km).研究了胶束与组氨酸(His)或谷氨酸(Glu)所组成的复配体系对MCB的催化水解作用. 结果表明: 氨基酸小分子的加入极大地促进了水解反应的进行, 而胶束与氨基酸在1:1的摩尔浓度配比时催化效果最好. 温度对水解反应速率以及副产物的产生有明显的影响. 在130℃, pH 5.0的水溶液中, 胶束与谷氨酸的复配体系催化MCB水解反应1.5 h后的葡萄糖收率可达到36.6%. 本文也对此催化体系催化MCB水解反应动力学进行了研究, 获得了催化反应的表观一级速率常数(kobsd), 计算得到催化水解反应生成葡萄糖的活化能(Ea)为97.18 kJ·mol-1.  相似文献   
117.
Chelating resins based on biopolymers, specifically cellulose, offers a green analytical method for determination of metal ions at trace levels present in various samples. It offers a fast, accurate and simple method for separation and pre-concentration of metal ions at low concentrations, prior to their determination by instrumental method. Cellulose based chelating resin (CELL-GLY) has been synthesised by immobilising glycine on it. CELL-GLY was used for the determination of trace amounts of Cu2+ and Ni2+ from aqueous solutions before their determination by FAAS. The preparation of CELL-GLY involves simple steps, based on natural and easily available biopolymer cellulose, which makes its use as chelating resin is a green method. The Cu2+ and Ni2+ can be quantitatively recovered from the CELL-GLY in the pH range 4.8–6.9 and 6.9-7.8 respectively with a recovery of more than 95% for each of these metal ions. Recovery of these metal ions using CELL-GLY was quantitative up to 35 °C. The detection limits for copper and nickel by FAAS were 1.20 ppb and 1.40 ppb, respectively. The method was successfully employed for the determination of trace amounts of Cu2+ and Ni2+ in various samples.  相似文献   
118.
A cost-efficient kaolinite-cellulose/cobalt oxide green nanocomposite (Kao-Cel/Co3O4 NC) was successfully synthesized, and utilized as a promising material for removing Pb2+ and Cd2+ from aqueous solution. The fabricated nanocomposite has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy-energy dispersive X-ray, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The batch methodology was exploited for optimization of process parameters and the optimized conditions were found to be adsorbent dosage (2.0 g/L), extraction time (50 min), initial concentration (60 mg/L), and initial solution pH (6). Kao-Cel/Co3O4 NC displayed excellent adsorption properties and achieved maximum saturation capacity (Qm) of 293.68 mg Pb2+/g and 267.85 mg Cd2+/g, with an equilibration time of 50 min at 323 K. The Langmuir model best expressed the isotherm data recommending the adsorption onto energetically homogeneous NC surface, while the compatibility of kinetics data with pseudo-second-order model revealed the dependency of adsorption rate on adsorption capacity, and probable involvement of chemisorption in the rate-controlling step. Electrostatic interaction and ion exchange mechanism were responsible for the uptake of Pb2+ and Cd2+ by Kao-Cel/Co3O4 NC as demonstrated by Fourier transform infrared spectroscopy and pH studies. Thermodynamic parameters confirmed the physical, spontaneous, and endothermic sequestration processes. Real water investigation specified that the present adsorbent could be effectively used for liquid phase decontamination of Pb2+ and Cd2+. The nanocomposite exhibited high reusability, which could be utilized efficiently for five runs with sustainable results. In summary, this study portrayed the present nanocomposite as an emerging material for the adsorption of heavy metal ions particularly Pb2+ and Cd2+.  相似文献   
119.
Over the years, eco-friendly raw biomass is being investigated to develop novel green monomer and oligomer components for sustainable polymer materials synthesis. The use of naturally obtained biomass can reduce the dependence on petrochemical suppliers and the impact of petroleum prices. Polymer materials obtained from biomass are a competitive alternative comparing with those made from petrochemicals. Domestically and industrially used vegetable oil derivatives are considered widely available, while cellulose derivatives are the most abundant natural polymers. Biobased acrylic polymers developed from vegetable oils and cellulose are very popular nowadays. Using acrylic derivatives of vegetable oils and cellulose as naturally obtained materials leads to long-lasting biopolymers with a wide range of high exploitation properties and applications. The characteristics of vegetable oil- and cellulose-based acrylate resins of high-biorenewable carbon content are suitable for industrial application, while their role is still underestimated. A brief analysis of biomass-derived biopolymer resin compositions, properties, and applications is critically outlined herein.  相似文献   
120.
A novel cellulose acetate-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer was prepared via free radical polymerization for the first time. The chemical structure of the graft copolymer was confirmed using FT-IR, 1H NMR and EDX. The TGA and DSC investigated the thermal changes. Factors affecting the grafting process were studied and various grafting characteristic parameters such as grafting efficiency (%), grafting yield (%) and add-on value (%) were determined. Flexible membranes based on different graft copolymer compositions were fabricated by simple solution casting. Physicochemical properties including ion exchange capability (IEC), water uptake (WU) and proton conductivity (σ) were evaluated. These membranes demonstrated higher IEC, WU and conductivity than the pristine CA. The maximum proton conductivity of the CA-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer membrane (68%; Add-on %) was found to be 6.44 × 10−3 S/cm compared with 0.035 × 10−3 S/cm of the pristine CA. Thus, the appropriate graft copolymer composition will allow fine-tuning of the physical characteristics and led to several potential applications, such as polyelectrolyte fuel cells membranes or biodiesel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号