首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   28篇
  国内免费   138篇
化学   1206篇
晶体学   4篇
力学   10篇
综合类   4篇
数学   1篇
物理学   127篇
  2024年   2篇
  2023年   19篇
  2022年   31篇
  2021年   47篇
  2020年   54篇
  2019年   22篇
  2018年   22篇
  2017年   39篇
  2016年   48篇
  2015年   39篇
  2014年   35篇
  2013年   85篇
  2012年   42篇
  2011年   62篇
  2010年   57篇
  2009年   83篇
  2008年   106篇
  2007年   75篇
  2006年   73篇
  2005年   76篇
  2004年   59篇
  2003年   39篇
  2002年   39篇
  2001年   23篇
  2000年   25篇
  1999年   15篇
  1998年   14篇
  1997年   23篇
  1996年   9篇
  1995年   13篇
  1994年   15篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1977年   1篇
  1972年   1篇
排序方式: 共有1352条查询结果,搜索用时 15 毫秒
31.
Polyurethane waterborne synthesis was performed using a two-step method, commonly referred to as a prepolymer method. Nanocomposites based on waterborne polyurethane and cellulose nanocrystals were prepared by the prepolymer method by altering the mode and step in which the nanofillers were incorporated during the polyurethane formation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by Fourier transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and tensile tests. FTIR results indicated that the degree of interaction between the nanofillers and the WPU through hydrogen bonds could be controlled by the method of cellulose nanocrystal incorporation. Data obtained from SAXS experiments showed that the cellulose nanocrystals as well as the step of the reaction in which they are added influenced the morphology of the polyurethane. The reinforcing effect of CNCs on the nanocomposites depends on their morphology.  相似文献   
32.
The properties and biodegradation behavior of blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate-glycidylmethacrylate copolymer (EVA-GMA), and their composites with cellulose microfibers (CF) were investigated. The blends and composites were obtained by melt mixing and the morphology, phase behavior, thermal and rheological properties of PLA/EVA-GMA blends and PLA/EVA-GMA/CF composite films were investigated as a function of the composition. The disintegrability in composting conditions was examined by means of morphological, thermal and chemical analyses to gain insights into the post-use degradation processes. The results indicated a good compatibility of the two polymers in the blends with copolymer content up to 30 wt.%, while at higher EVA-GMA content a phase separation was observed. In the composites, the presence of EVA-GMA contributes to improve the interfacial adhesion between cellulose fibers and PLA, due to interactions of the epoxy groups of GMA with hydroxyls of CF. The addition of cellulose microfibers in PLA/EVA-GMA system modifies the rheological behavior, since complex viscosity increased in presence of fibers and decreased with an increase in frequency. Disintegration tests showed that the addition of EVA-GMA influence the PLA disintegration process, and after 21 days in composting conditions, blends and composites showed faster degradation rate in comparison with neat PLA due to the different morphologies induced by the presence of EVA-GMA and CF phases able to allow a faster water diffusion and an efficient PLA degradation process.  相似文献   
33.
A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons.  相似文献   
34.
When was the earliest glass produced in China? This has still been a question so far. Some archaeologists have thought that Yu Guo beads are real glass, the earliest glass(1100-771 B. C. ) in China. However, more details of scientific investigations in this paper show that Yu Guo beads are mainly made of clastic quartz (>95%) with a small amount of clay and sintered under the low temperature(500-600℃). It is not a glassy body, but a kind of polycrystal ornaments.  相似文献   
35.
Hydrolytic degradation of cellulose was shown to take place during the activation procedure in distilled water during the dissolution procedure of cellulose samples from papers for size-exclusion chromatography analyses in the lithium chloride-N,N-dimethylacetamide (DMAc) solution system. The use of dilute aqueous sodium hydroxide solution in the activation procedure prevents hydrolytic degradation of cellulose during the dissolution procedure, especially in the case of samples of aged papers with low pH. The use of the freeze-drying technique provides samples of cellulose ready-made for dissolution in lithium chloride-N,N-dimethylacetamide solution.  相似文献   
36.
采用硫酸水解法制备纳米纤维素晶须, 再以冰醋酸为分散介质, 浓硫酸为催化剂, 醋酸酐为酯化剂对纳米纤维素晶须进行不同程度醋酸酯化改性, 得到醋酸酯化的纳米纤维素. 采用红外光谱(FTIR)、 X射线光衍射(XRD)、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对改性产物进行分析和表征. 结果表明, 改性纳米纤维素晶须中醋酸酯基的平均取代度过小或过大时均不适宜用作复合材料的增强相. 当改性纳米纤维素晶须中醋酸酯基的平均取代度为0.05时, 醋酸酯化反应只发生在纳米纤维素晶须的表面. 此时, 晶须能在丙酮中稳定悬浮, 表现出流动双折射现象, 并保持了改性前纳米纤维素晶须的棒状形态和高结晶度. 将这种改性后的纳米纤维素晶须作为增强相与醋酸纤维素通过溶液浇铸法制成纳米复合膜, 结果显示, 与空白醋酸纤维素膜相比, 添加改性纳米纤维素晶须后, 纳米复合膜的拉伸强度、 杨氏模量和断裂伸长率都得到了提高. 在玻璃化转变区间纳米复合膜储能模量的降低幅度小于空白膜.  相似文献   
37.
李冬阳  樊凯  吴坚  应义斌 《分析化学》2011,(9):1318-1322
基于自动磁珠转运,建立了转基因蛋白Cry1Ab免疫检测的新方法.利用水热法制备了粒径约400 nm的纳米磁球,并进行电镜表征,通过溶胶法对磁球表面进行氨基修饰,采用戊二醛偶联对磁珠实现抗体包被,在核酸提取仪中进行酶联免疫反应,采用分光光度法进行检测.本方法对转基因蛋白Cry1Ab的检出限低于1 μg/L,与商品化酶联免...  相似文献   
38.
Peroxynitrite, as a derivative of nitric oxide, is a potent oxidant. It reacts with several biological molecules, makes cellular and tissue damages, and is related with many diseases; therefore, it is of major concern in current medical research works. In this work, a special perm-selective cellulose acetate membrane sampler is used to implement flow injection analysis (FIA)/chemiluminscence (CL)-detection method for the detection of peroxynitrite with Luminol CL-reagent. Optimum detection conditions were established, and the permeability of peroxynitrite through cellulose acetate (CA) membrane, as well as the interference from matrix constituents were studied. The proposed method has the high sensitivity of the CL-detection and the selectivity of perm-selective membrane sampler. The obtained detection limit of 1×10−11 M (without dialysis membrane) and 1×10−10 M (with dialysis membrane), makes it possible to monitor the elusive peroxynitrite in biological samples. The mechanism of luminol CL-emission generated during oxidation by peroxynitrite and the kinetics of peroxynitrite decomposition were also studied using FIA/CL-detection set-up.  相似文献   
39.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   
40.
磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素   总被引:6,自引:0,他引:6  
以纤维素和硝酸铁为原料,发烟硫酸为磺酸化试剂,采用热解法合成了磁性碳基磺酸化固体酸催化剂(Fe/C-SO3H).利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外(FT-IR)光谱仪和振动样品磁强计(VSM)等手段对催化剂进行了表征,评价了催化剂在纤维素水解反应中的催化活性.结果表明,Fe是以γ-Fe2O3的形式存在于碳本体中,催化剂呈现超顺磁性.对于纤维素的水解反应,在优化条件下,纤维素的转化率可达40.6%.此外,催化剂可稳定分散于反应体系中,并在外加磁场作用下可快速与反应体系分离.但催化剂重复使用时催化活性有所下降,其失活原因经初步认定是由于表面部分磺酸基团在反应过程中脱落.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号