首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   52篇
  国内免费   111篇
化学   899篇
晶体学   5篇
力学   101篇
综合类   1篇
数学   83篇
物理学   380篇
  2024年   10篇
  2023年   69篇
  2022年   46篇
  2021年   55篇
  2020年   60篇
  2019年   58篇
  2018年   29篇
  2017年   43篇
  2016年   54篇
  2015年   61篇
  2014年   75篇
  2013年   83篇
  2012年   64篇
  2011年   71篇
  2010年   60篇
  2009年   116篇
  2008年   89篇
  2007年   70篇
  2006年   56篇
  2005年   50篇
  2004年   42篇
  2003年   24篇
  2002年   35篇
  2001年   21篇
  2000年   18篇
  1999年   16篇
  1998年   11篇
  1997年   16篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有1469条查询结果,搜索用时 15 毫秒
181.
Praseodymium oxide (Pr6O11), hematite (Fe2O3), graphene oxide (GO), and polycaprolactone (PCL) based polymeric nanocomposites (NCs) are fabricated, aiming their usage as bio-scaffold for medical purposes. Because of their distinctive light absorption and stability, Fe2O3 and Pr6O11 have been introduced as potential optical elements. The structure and size examination of NCs were executed by XRD, Raman, and FESEM. Pr6O11/Fe2O3/GO@PCL polymeric NC is exhibited Pr6O11, and Fe2O3 average size of 1.4, 0.4 µm, while average pores size 2.1 µm. As well, the Uv–Vis shows an absorption edge shifting along the x-axis that it begins with 3.1 eV for pure PCL, after that it declined to 1.7 eV for Pr6O11@PCL NC. Also, Pr6O11 @PCL, and Pr6O11/ Fe2O3@PCL NCs show the lowest similar contact angle with 38°. Regarding cell attachment evaluation test, the Pr6O11/Fe2O3/GO@PCL NC healing valuation is touched ∼ 80%. As a result, the structure enabled 3-dimensional the division of normal cells, so promoting wound healing.  相似文献   
182.
Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.  相似文献   
183.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   
184.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
185.
The emission efficiency of organic semiconductors (OSCs) often suffers from aggregation caused quenching (ACQ). An elegant solution is aggregation-induced emission (AIE), which constitutes the design of the OSC so that its morphology inhibits quenching π–π interactions and non-radiative motional deactivation. The light-emitting electrochemical cell (LEC) can be sustainably fabricated, but its function depends on motion of bulky ions in proximity of the OSC. It is therefore questionable whether the AIE morphology can be retained during LEC operation. Here, we synthesize two structurally similar OSCs, which are distinguished by that 1 features ACQ while 2 delivers AIE. Interestingly, we find that the AIE-LEC significantly outperforms the ACQ-LEC. We rationalize our finding by showing that the AIE morphology remains intact during LEC operation, and that it can feature appropriately sized free-volume voids for facile ion transport and suppressed non-radiative excitonic deactivation.  相似文献   
186.
Mushroom terpenoids are biologically and chemically diverse fungal metabolites. Among them, melleolides are representative sesquiterpenoids with a characteristic protoilludane skeleton. In this study, we applied a recently established hot spot knock-in method to elucidate the biosynthetic pathway leading to 1α-hydroxymelleolide. The biosynthesis of the sesquiterpene core involves the cytochrome P450 catalyzing stepwise hydroxylation of the Δ6-protoilludene framework and a stereochemical inversion process at the C5 position catalyzed by short-chain dehydrogenase/reductase family proteins. The highlight of the biosynthesis is that the flavoprotein Mld7 catalyzes an oxidation-triggered double-bond shift accompanying dehydration and acyl-group-assisted substitution with two different nucleophiles at the C6 position to afford the Δ7-protoilludene derivatives, such as melleolide and armillarivin. The complex reaction mechanism was proposed by DFT calculations. Of particular importance is that product distribution is regulated by interaction with the cell membrane.  相似文献   
187.
Single crystal surfaces with highly coordinated sites very often hold high specific activities toward oxygen reduction reaction (ORR) and others. Transposing their high specific activity to practical high-surface-area electrocatalysts remains challenging. Here, ultrathin Pt(100) alloy surface is constructed via epitaxial growth. The surface shows 3.1–6.9 % compressive strain and bulk-like characteristics as demonstrated by site-probe reactions and different spectroscopies. Its ORR activity exceeds that of bulk Pt3Ni(100) and Pt(111) and presents a 19-fold increase in specific activity and a 13-fold increase in mass activity relative to commercial Pt/C. Moreover, the electrochemically active surface area (ECSA) is increased by 4-fold compared to traditional thin films (e.g. NSTF), which makes the catalyst more tolerant to voltage loss at high current densities under fuel cell operation. This work broadens the family of extended surface catalysts and highlights the knowledge-driven approach in the development of advanced electrocatalysts.  相似文献   
188.
This paper discusses the effects of adding particulate filler to a system undergoing liquid–liquid thermally induced phase separation (L–L TIPS). While much is known about the growth of droplets in L–L TIPS, little is known about the effect particular fillers have on droplet growth and the final cell size in the resulting microporous membranes. In this work, zeolite particles are shown to have a significant effect on the final cell size of these microporous membranes, the extent of which depends on the particle loading and processing conditions used to form the membrane. Two polymer–diluent–zeolite systems are reported: isotactic polypropylene–diphenyl ether and poly(methyl methacrylate)–cyclohexanol, both with zeolite 4A particles.  相似文献   
189.
We studied the topographical effect of roughness displayed by a closely packed particle monolayer on formation of a cell monolayer (cell sheet). Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527nm (SA053) and 1270nm (SA127) in diameter. Human umbilical vein endothelial cells (HUVECs) were seeded at a high density (2.0 x10(5)cells/cm(2)) onto particle monolayers. It was found that cells gradually became into contact with adjacent cells on the SA053 monolayer and the formed cell sheet could be readily detached from the particle monolayer by gentle pipetting. On the other hand, cells adhering onto the tissue culture polystyrene (TCPS) and the SA127 particle monolayer were difficult to peel off. At a low cell seeding density (5.0x10(4)cells/cm(2)), pre-coating with bovine plasma fibronectin (FN) allowed cell growth on an SA053 particle monolayer, and a confluent monolayer was able to be peeled as a cell sheet from the particle monolayer just by pipetting. By immunostaining of human fibronectin, we found that fibronectin was secreted and concentrated onto the substrate side of a cell sheet. The obtained cell sheet adhered and grew on the TCPS again within 20min.  相似文献   
190.
In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell–bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号