首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   190篇
  国内免费   89篇
化学   611篇
晶体学   40篇
力学   2篇
综合类   1篇
数学   1篇
物理学   509篇
  2023年   10篇
  2022年   25篇
  2021年   36篇
  2020年   66篇
  2019年   29篇
  2018年   41篇
  2017年   28篇
  2016年   55篇
  2015年   49篇
  2014年   56篇
  2013年   88篇
  2012年   61篇
  2011年   70篇
  2010年   40篇
  2009年   61篇
  2008年   64篇
  2007年   76篇
  2006年   68篇
  2005年   35篇
  2004年   20篇
  2003年   69篇
  2002年   27篇
  2001年   52篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1990年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
41.
Molecule‐based micro‐/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro‐sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro‐/nanomaterials. Unlike single‐component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro‐/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro‐/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low‐dimensional multicomponent micro‐/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro‐/nanomaterials.  相似文献   
42.
Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high-resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so-far unsurpassed size-distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size- and shape-selective, since mesocrystals show both long-range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals.  相似文献   
43.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   
44.
45.
46.
47.
48.
本文简要综述了金属-半导体异质结构纳米晶的设计、可控制备和物性研究的相关工作.设计了异相成核与生长、选择硫化和种子介导液相外延生长3种不同的方法并以此制备了多种金属-半导体异质结构纳米晶,对其中所涉及的反应机制进行了论述,并简要探讨了金属-半导体异质结构纳米晶的热稳定性、表面等离子共振活性、荧光特性以及异质界面的电荷转移和保持能力.  相似文献   
49.
Polyurethane waterborne synthesis was performed using a two-step method, commonly referred to as a prepolymer method. Nanocomposites based on waterborne polyurethane and cellulose nanocrystals were prepared by the prepolymer method by altering the mode and step in which the nanofillers were incorporated during the polyurethane formation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by Fourier transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and tensile tests. FTIR results indicated that the degree of interaction between the nanofillers and the WPU through hydrogen bonds could be controlled by the method of cellulose nanocrystal incorporation. Data obtained from SAXS experiments showed that the cellulose nanocrystals as well as the step of the reaction in which they are added influenced the morphology of the polyurethane. The reinforcing effect of CNCs on the nanocomposites depends on their morphology.  相似文献   
50.
ZnO nanocrystals are synthesized using the quenching method. The properties of the grown nanocrystals are studied using ultraviolet-vis spectroscopy, x-ray diffraction, photoluminescence, electron diffraction, energy dispersive x-ray spectroscopy, and high resolution transmission electron microscopy. Current-voltage characteristics of the prepared samples are studied for investigating the possible application of the samples as switch and memristor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号