首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   181篇
  国内免费   89篇
化学   611篇
晶体学   40篇
力学   2篇
综合类   1篇
数学   1篇
物理学   509篇
  2023年   10篇
  2022年   25篇
  2021年   36篇
  2020年   66篇
  2019年   29篇
  2018年   41篇
  2017年   28篇
  2016年   55篇
  2015年   49篇
  2014年   56篇
  2013年   88篇
  2012年   61篇
  2011年   70篇
  2010年   40篇
  2009年   61篇
  2008年   64篇
  2007年   76篇
  2006年   68篇
  2005年   35篇
  2004年   20篇
  2003年   69篇
  2002年   27篇
  2001年   52篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1990年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
101.
In this review, we discuss the application of cellulose nanoparticles as a sustainable and cost-effective source of green stabilizers for formulation of foodstuff. Fibrillar cellulose nanocrystal and nanofibril stabilize Pickering systems because of their ability to adsorb at the oil/water interfaces, forming protective layers. They also form associative structures in the continuous phase, increasing their viscoelastic properties and preventing flocculation. We describe the chemical and structural features of nanocelluloses and discuss the principles that support their utilization as stabilizers, especially in the context of recent prospects in food and health domains, given safety and regulatory advances. In addition, we describe the benefits of combining nanocelluloses with other food ingredients to extend their functional attributes. Particularly, nanocellulose-based Pickering emulsions are used to create edible soft materials with multiple functionalities. This article is expected to stimulate the use of nanocelluloses as functional ingredients to create food products with improved performance and novel properties.  相似文献   
102.
We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.  相似文献   
103.
Poor aqueous solubility of active compounds is a major issue in today’s drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.  相似文献   
104.
A drug nanocrystals self-stabilized Pickering emulsion (NSSPE) with a unique composition and microstructure has been proven to significantly increase the bioavailability of poorly soluble drugs. This study aimed to develop a new solid NSSPE of puerarin preserving the original microstructure of NSSPE by spray-drying. A series of water-soluble solid carriers were compared and then Box-Behnken design was used to optimize the parameters of spray-drying. The drug release and stability of the optimized solid NSSPE in vitro were also investigated. The results showed that hydroxypropyl-β-cyclodextrin (HP-β-CD), rather than solid carriers commonly used in solidification of traditional Pickering emulsions, was suitable for the solid NSSPE to retain the original appearance and size of emulsion droplets after reconstitution. The amount of HP-β-CD had more influences on the solid NSSPE than the feed rate and the inlet air temperature. Fluorescence microscopy, confocal laser scanning microscopy and scanning electron microscopy showed that the reconstituted emulsion of the solid NSSPE prepared with HP-β-CD had the same core-shell structure with a core of oil and a shell of puerarin nanocrystals as the liquid NSSPE. The particle size of puerarin nanocrystal sand interfacial adsorption rate also did not change significantly. The cumulative amount of released puerarin from the solid NSSPE had no significant difference compared with the liquid NSSPE, which were both significantly higher than that of puerarin crude material. The solid NSSPE was stable for 3 months under the accelerated condition of 75% relative humidity and 40 °C. Thus, it is possible todevelop the solid NSSPE preserving the unique microstructure and the superior properties in vitro of the liquid NSSPE for poorly soluble drugs.  相似文献   
105.
Nanomaterials with localized surface plasmon resonance (LSPR) locating in the near-infrared region have broad application prospects in the field of biomedicine. However, the biggest problem that limits the biomedical application of such nanomaterials lies in two aspects: First, the potential long-term in vivo toxicity caused by the metabolism of many nanomaterials with LSPR effect; Second, most of current nanomaterials with LSPR effect are difficult to achieve LSPR wavelength tunability in the near-infrared region to adapt to different biomedical applications. Copper selenide nanomaterials are composed of selenium and copper, which are necessary nutrient elements for human life. Because of the active and flexible chemical properties of selenium and copper, copper selenide nanomaterials can not only be effectively degraded and utilized in human body, but also be endowed with various physicochemical properties by chemical modification or doping. Recently, copper selenide nanomaterials have shown unique properties such as LSPR in the near-infrared region, making them attractive for near-infrared thermal ablation, photoacoustic imaging, disease marker detection, multimode imaging, and so on. Currently, to the best of our knowledge, there is no review on the LSPR properties of copper selenide nanomaterials and its biomedical applications. This review first discusses the relationship between the physicochemical properties and the LSPR of copper selenide nanomaterials and then summarizes the latest progress in the application of copper selenide nanomaterials in biological detection, diagnosis, and treatment of diseases. In addition, the advantages, and prospects of copper selenide nanomaterials in biomedicine are also highlighted.  相似文献   
106.
Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs’ antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel’s properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.  相似文献   
107.
Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline(TPP) with a series of sizes were synthesized by reprecipitation method.The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocrystals with an average size of 300nm to 34.6% for those with an average size of 20nm.Surface capping by polyvinyl pyrrolidone(PVP) will improve the quantum efficiency of TPP nanocrystals.The size-dependence and capping-induced variation of the luminescence quantum efficiency was elucidated in viewpoint of aggregation quenching and the equilibrium between the TPP monomers and the aggregates in TPP nanocrystals.  相似文献   
108.
Stretchable self‐healing urethane‐based biomaterials have always been crucial for biomedical applications; however, the strength is the main constraint of utilization of these healable materials. Here, a series of novel, healable, elastomeric, supramolecular polyester urethane nanocomposites of poly(1,8‐octanediol citrate) and hexamethylene diisocyanate reinforced with cellulose nanocrystals (CNCs) are introduced. Nanocomposites with various amounts of CNCs from 10 to 50 wt% are prepared using solvent casting technique followed by the evaluation of their microstructural features, mechanical properties, healability, and biocompatibility. The synthesized nanocomposites indicate significantly higher tensile modulus (approximately 36–500‐fold) in comparison to the supramolecular polymer alone. Upon exposure to heat, the materials can reheal, but nevertheless when the amount of CNC is greater than 10 wt%, the self‐healing ability of nanocomposites is deteriorated. These materials are capable of rebonding ruptured parts and fully restoring their mechanical properties. In vitro cytotoxicity test of the nanocomposites using human dermal fibroblasts confirms their good cytocompatibility. The optimized structure, self‐healing attributes, and noncytotoxicity make these nanocomposites highly promising for tissue engineering and other biomedical applications.  相似文献   
109.
《中国化学快报》2019,30(10):1843-1848
Stokes shift is an important feature of fluorescence, which reveals the energy loss between the excitation and the emission. For most fluorescent materials(e.g., organic dyes and proteins), the large overlap between the absorption and emission spectra endow them a small Stokes shift that induced reabsorption by fluorophore itself. Although the self-absorption can be effectively reduced due to the emergence of fluorescent nanomaterials, fluorescence attenuation is still observed in aggregated or concentrated nanocrystals, causing reduced sensitivity of biosensors. Therefore, increasing the Stokes shift can effectively improve the performance of nano-agents based biosensing. In this critical review, through understanding the Stokes shift from the viewpoint of self-absorption, the influence of Stokes shift on fluorescence properties are discussed. Based on the principle of changing the Stokes shift of fluorescent nanomaterials, we described the methods for constructing various optically large Stokes shift-based nanomaterials, and the application of these nanocrystals in biosensing is especially concerned in this review.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号