首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   82篇
  国内免费   120篇
化学   673篇
晶体学   8篇
力学   14篇
综合类   4篇
物理学   80篇
  2024年   2篇
  2023年   14篇
  2022年   29篇
  2021年   37篇
  2020年   46篇
  2019年   45篇
  2018年   29篇
  2017年   46篇
  2016年   39篇
  2015年   27篇
  2014年   41篇
  2013年   61篇
  2012年   32篇
  2011年   25篇
  2010年   18篇
  2009年   30篇
  2008年   25篇
  2007年   20篇
  2006年   28篇
  2005年   25篇
  2004年   28篇
  2003年   24篇
  2002年   9篇
  2001年   9篇
  2000年   11篇
  1999年   12篇
  1998年   11篇
  1997年   8篇
  1996年   2篇
  1995年   7篇
  1994年   11篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1967年   1篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
771.
772.
Here we investigated the structural and biological effects ensuing from the disulfide bond replacement of a potent and selective C-X-C chemokine receptor type 4 (CXCR4) peptide antagonist, with 1,4- and 1,5- disubstituted 1,2,3-triazole moieties. Both strategies produced candidates that showed high affinity and selectivity against CXCR4. Notably, when assessed for their ability to modulate the CXCL12-mediated cell migration, the 1,4-triazole variant conserved the antagonistic effect in the low-mid nanomolar range, while the 1,5-triazole one displayed the ability to activate the migration, becoming the first in class low-molecular-weight CXCR4 peptide agonist. By combining NMR and computational studies, we provided a valuable model that highlighted differences in the interactions of the two peptidomimetics with the receptor that could account for their different functional profile. Finally, we envisage that our findings could be translated to different GPCR-interacting peptides for the pursuit of novel chemical probes that could assist in dissecting the complex puzzle of this fundamental class of transmembrane receptors.  相似文献   
773.
The formation of Mo/Au surface alloy during Au-assisted chemical vapor deposition (CVD) of MoS2 is confirmed by a series of control experiments. A metal–organic chemical vapor deposition (MOCVD) system is adapted to conduct two-dimensional MoS2 growth in a controlled environment. Sequential injection of Mo and S precursors, which does not yield any MoS2 on SiO2/Si, grows atomically thin MoS2 on Au, indicating the formation of an alloy phase. Transmission electron microscopy of a cross-section of the specimen confirms the confinement of the alloy phase near the surface only. These results show that the reaction intermediate is the surface alloy, and that the role of Au in the Au-assisted CVD is the formation of an atomically thin reservoir of Mo near the surface. This mechanism is clearly distinguished from that of MOCVD, which does not involve the formation of any alloy phases.  相似文献   
774.
Here, a new approach to further improve graphdiyne (GDY) based materials by using benzyl disulfide (BDS) as the sulfur source is demonstrated. The S radicals, generated from the homolysis of BDS, can react with the acetylenic bonds and be well confined in the triangle-like pores of GDY, forming S-GDY. The as-prepared S-GDY, which possesses numerous heteroatom defects and active sites, is suitable for applications in many electronic devices, such as lithium ion batteries (LIBs). As expected, the assembled LIBs based on S-GDY displayed improved electrochemical properties, including larger capacity and superior rate capability.  相似文献   
775.
Propulsion at the microscale has attracted significant research interest. In this work, a numerical simulation to explain the speed boost of up to 34 % experienced by transition metal dichalcogenides (TMD) based micromotors under the effect of applied magnetic fields is described. The simulations show that, when an external magnetic field is applied, the flow regime changes from turbulent to laminar. This causes an increase in the residence time of the fuel over the catalyst surface, which enhances the oxygen production. The more efficient generation and growth of the bubbles lead to an increase of the capillary force exerted by them. Interestingly, the effect is more pronounced as the level of fuel decrease. The validity of the model is also proven by comparing both theoretical and experimental results. Interestingly, the speed enhancement in magnetic mode depends on geometrical factors only, as a similar phenomenon was observed in a variety of microjets with a variable surface roughness. The understanding of such phenomena will open new avenues for understanding and controlling the motion behavior of high-towing-force catalytic micromotors.  相似文献   
776.
777.
The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS2) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique. We demonstrate that the 1T-MoS2/2H-MoS2 heterostructures exhibited a narrow bandgap ∼ 1.7 eV, and a very low reflectance (<5%) under visible-light, owing to their particular vertical micro-flower-like structure. We exfoliated the CVD-synthesised 1T-MoS2/2H-MoS2 films to assess their photodegradation properties towards the standard methylene blue dye. Our results showed that the photo-degradation rate-constant of the 1T-MoS2/2H-MoS2 heterostructures is much greater under UV excitation (i.e., 12.5 × 10−3 min−1) than under visible light illumination (i.e., 9.2 × 10−3 min−1). Our findings suggested that the intermixing of the conductive 1T-MoS2 with the semi-conducting 2H-MoS2 phases favors the photogeneration of electron-hole pairs. More importantly, it promotes a higher efficient charge transfer, which accelerates the methylene blue photodegradation process.  相似文献   
778.
The complex of (Me4N)2Mo3S13 ( I ) has been synthesized under mild hydrothermal condition. The crystal structure was determined by single crystal X‐ray diffraction at room temperature. Crystal data: M = 854.91, Trigonal, space group P3 (No. 143), a = 11.2351(8) Å, c = 5.8885(6) Å, and Z = 1, There is an inorganic [Mo3S13]2‐ core composed of a Mo3‐triangle, a μ3‐S atom, three doubly bridging disulfide and three terminal disulfide. Two organic amine ions act as the positive charge to balance the [Mo3S13]2‐ cluster.  相似文献   
779.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号