首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   10篇
  国内免费   26篇
化学   112篇
晶体学   4篇
力学   3篇
综合类   3篇
数学   1篇
物理学   36篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   4篇
  2015年   11篇
  2014年   9篇
  2013年   10篇
  2012年   7篇
  2011年   15篇
  2010年   7篇
  2009年   16篇
  2008年   9篇
  2007年   12篇
  2006年   15篇
  2005年   7篇
  2004年   8篇
  2001年   1篇
  2000年   1篇
排序方式: 共有159条查询结果,搜索用时 562 毫秒
21.
This paper focuses on the influence of ionic liquid on carbon nanotube based elastomeric composites. Multi-walled carbon nanotubes (MWCNTs) are modified using an ionic liquid at room temperature, 1-butyl 3-methyl imidazolium bis (trifluoromethylsulphonyl) imide (BMI) and modified MWCNTs exhibit physical (cation–π/π–π) interaction with BMI. The polychloroprene rubber (CR) composites are prepared using unmodified and BMI modified MWCNTs. The presence of BMI not only increases the alternating current (AC) electrical conductivity and polarisability of the composites but also improves the state of dispersion of the tubes as observed from dielectric spectroscopy and transmission electron microscopy respectively. In addition to the hydrodynamic reinforcement, the formation of improved filler–filler networks is reflected in the dynamic storage modulus (E′) for modified MWCNTs/CR composites in amplitude sweep measurement upon increasing the proportion of BMI. Hardness and mechanical properties are also studied for the composites as a function of BMI.  相似文献   
22.
The far ultraviolet C (UVC) light sources based on carbon nanotube (CNT) field emitters as excitation sources have become promising light sources for sterilization, disinfection, and water purification. However, the low light extraction efficiency of UVC–CNT light sources still hinders the practical application of these structures. Herein, we report an optimized aluminum (Al) reflector to enhance the light extraction efficiency of UVC–CNT light sources. Optical analysis of UVC-CNT light sources covered by the Al reflectors with various thicknesses ranging from 30 to 150 nm was performed to realize the optimized reflector. The UVC-CNT light sources exhibit the highest light extraction efficiency when the Al reflector layer has an optimized thickness of 100 nm. For comparison, the cathodoluminescence (CL) spectra were recorded for UVC–CNT light sources with and without the optimized Al reflector. The measured light output power and the estimated power efficiency of the UVC–CNT light-source-tube with Al reflector were enhanced by about 27 times over the reference. This enhancement is mainly attributed to the outstanding reflection effect of the Al reflector.  相似文献   
23.
The adsorption of benzene, toluene, and chlorobenzene on single-walled carbon nanotubes (SWCNTs) with and without acid oxidation was conducted to investigate the influences of derivative groups on benzene rings and functional groups from SWCNTs on adsorption by SWCNTs. The SWCNTs of high purity were chosen and moderate acid oxidation was performed so that the surface physical properties remained unchanged after acid oxidation and the influences of acid oxidation on adsorption were only contributed from the modification of the surface chemistry of SWCNTs. The oxygen-containing surface groups introduced by acid oxidation obstructed the interactions between functional groups of nonpolar benzene derivatives and C-rings of SWCNTs significantly. The dispersive interaction between the partially positive H+ of the methyl group and the oxygen-containing surface groups slightly increased the adsorption of toluene on oxidized SWCNTs at high solution pH. The thermodynamic of adsorption was also studied at different temperatures.  相似文献   
24.
Metal oxides have only recently begun to be used as catalysts for the growth of carbon nanotubes. Here, we propose a new model for the growth of carbon nanotubes, based on the intra‐granular charge transfer transition and the lattice strain of the catalyst nanoparticles. This is supported by results obtained from the doped metal oxides like samarium doped zinc oxide (SmZnO) and terbium doped zinc oxide (TbZnO). The intragranular charge transfer transition is believed to be responsible for the dissociation of the hydrocarbon molecules. The lattice strain of the catalyst nanoparticles appears to be responsible for the diffusion of carbon atoms through the catalyst particles.  相似文献   
25.
《先进技术聚合物》2018,29(6):1861-1869
π‐Plasmon absorbance films of carboxylic functionalized multiwall carbon nanotubes (CNTs) coupled with renewable and recycled polycaprolactone grafted pectin (PGP) platforms as successful alternative for ordinary nondegradable platforms were investigated. Characterization of the synthesized carboxylic functionalized CNTs was performed using 1H NMR and attenuated total reflectance Fourier transform infrared for structural identification, thermogravimetric analysis and derivative thermogravimetric analysis for thermal stability, and X‐ray powder diffraction for crystal structure, whereas the characterization of prepared PGP was done by means of attenuated total reflectance Fourier transform infrared for chemical structure, differential scanning calorimetry for melting endotherms of polycaprolactone and high crystalline structure of PGP, and thermogravimetric analysis and derivative thermogravimetric analysis for thermal stability of PGP. Fabrication of water‐dispersed carboxylic functionalized CNTs coupled with PGP films was performed by casting technique in the presence of Ca2+ as cross‐linker. The thin films were tested for π‐plasmon absorbance using UV‐Vis spectrometry. Different fractions of carboxylic functionalized CNTs and PGP films demonstrated π‐plasmon absorbance broad peaks at λmax = 232 nm, which corresponded to 5.36 eV. The fabrication of novel films from renewable recycled PGP platform and advanced carboxylic functionalized CNTs properties will be the key features for many of next forthcoming technologies. The PGP considered as environment‐friendly and easily degradable platforms will be a successful alternative for conventional nondegradable electronic platforms, and water‐dispersed carboxylic functionalized CNTs with advanced properties will be finding accelerating executive applications.  相似文献   
26.
催化剂低温NH3选择催化还原NO的研究   总被引:4,自引:0,他引:4  
研究了碳纳米管担载的五氧化二钒(V2O5/CNTs)催化剂上NO低温选择催化还原反应(SCR)。与活性炭载体的催化剂作了对比,结果显示,在负载低含量V2O5时碳纳米管较活性炭显示了更好的催化能力,而且在SO2存在下,催化性能有更大幅度的提高。暂态反应实验显示,V2O5/CNTs 催化剂上NO选择催化还原反应遵循Eley Rideal机理,即反应发生于吸附态的NH3和气相或弱吸附的NO之间。  相似文献   
27.
The effect of rare earths(Sm,Pr,Ce,Nd and La)on the hydrogenation properties of p-chloronitrobenzene(CNB)over Pt/CNTs catalyst was studied in ethanol at 303 K and normal pressure.The results exhibited that the hydrogenation of p-CNB could be carded out over PtMOx/CNTs catalysts.Both catalytic activities and yields of p-chloroaniline(CAN)were all improved.PtCeOx/ CNTs catalyst exhibited the best catalytic activity(TOF was 0.47 s~(-1))and the highest yield of p-CAN(97.5 mol%).PtCeOx/CNTs (1.0 wt%)catalyst ...  相似文献   
28.
This article explores Darcy–Forchheimer 3D flow of water-based carbon nanomaterial (CNTs). A bi-directional linear stretchable surface has been used to create the flow. Flow in porous space is represented by Darcy–Forchheimer expression. Heat transfer mechanism is explored through convective heating. Results for single-wall (SWCNTs) and multi-wall (MWCNTs) carbon nanotubes have been presented and compared. The reduction of partial differential system into nonlinear ordinary differential system is made through suitable variables. Optimal homotopic scheme is used for solutions development of governing flow problem. Optimal homotopic solution expressions for velocities and temperature are studied through graphs by considering various estimations of physical variables. Skin friction coefficients and local Nusselt number are analyzed through plots. Our findings show that the skin friction coefficients and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.  相似文献   
29.
张莉  李琛 《无机化学学报》2012,28(4):698-702
由乳液聚合法制备聚苯胺/碳纳米管复合电极材料,再利用感应耦合氧等离子体源对其进行射频放电处理,制得改性后的复合材料,进一步研究氧等离子体处理时间对材料表面性质和电化学性能的影响。通过SEM和FTIR对复合材料的表面形貌和组成进行分析和表征,结果显示复合材料在改性后的微观形貌均一,粒径变小且颗粒间团聚减轻,材料表面引入了羟基官能团。电化学测试表明,经氧等离子体改性处理10 min后,聚苯胺/碳纳米管复合材料具有突出的电化学特性,比电容为287.8 F.g-1,为改性前的1.7倍,同时等效串联电阻(ESR)降低了67.7%,是一种优良的超级电容器电极材料。由此也表明氧等离子体改性是一种高效的电极材料改性方法。  相似文献   
30.
Series of carbon nanotube supported Ru-based catalysts were prepared by impregnation method and applied successfully for complete removal of CO by CO selective methanation from H2-rich gas stream conducted in a fixed-bed quartz tubular reactor at ambient pressure.It was found that the metal promoter,reduction temperature and metal loading affected the catalytic properties significantly.The most excellent performance was presented by 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃.Since it decreased CO concentration to below 10ppm from 12000ppm by CO selective methanation at the temperature range of 180-240℃,and kept CO selectivity higher than 85% at the temperature below 200℃.Characterization using XRD,TEM,H2-TPR and XPS suggests that Zr modification of Ru/CNTs results in the weakening of the interaction between Ru and CNTs,a higher Ru dispersion and the oxidization of surface Ru.Amorphous and high dispersed Ru particles with small size were obtained for 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃,leading to excellent catalytic performance in CO selective methanation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号