首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   46篇
  国内免费   28篇
化学   263篇
晶体学   3篇
力学   8篇
综合类   4篇
数学   11篇
物理学   818篇
  2024年   2篇
  2023年   11篇
  2022年   30篇
  2021年   25篇
  2020年   32篇
  2019年   29篇
  2018年   27篇
  2017年   25篇
  2016年   27篇
  2015年   27篇
  2014年   86篇
  2013年   105篇
  2012年   84篇
  2011年   58篇
  2010年   78篇
  2009年   80篇
  2008年   77篇
  2007年   66篇
  2006年   23篇
  2005年   32篇
  2004年   17篇
  2003年   28篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   16篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1985年   4篇
  1984年   1篇
排序方式: 共有1107条查询结果,搜索用时 0 毫秒
991.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   
992.

Purpose

Lesions close to the internal craniocervical ligaments are a common problem in patients with whiplash injuries. The aim of this study was to evaluate the morphology and visibility of these ligamentous structures with a new isotropic three-dimensional (3D) turbo-spin-echo (TSE) technique.

Materials and Methods

MR (MR) images of the cervical spine of 52 healthy subjects (27 women and 25 men; mean age=29 years; age range=18–40 years) were taken with a T2-weighted 3D TSE sequence with variable flip-angle distribution [SPACE (Sampling Perfection with Application optimized Contrasts using different flip-angle Evolution)] at 1.5 T (Magnetom Avanto, Siemens Erlangen, Germany). Two experienced musculoskeletal radiologists read the images independently on a 3D imaging and postprocessing workstation. The visibility and morphology of the alar ligaments were evaluated on a five-point scale, and inter-reader correlation was assessed with kappa statistics.

Results

Both alar ligaments were detected in all subjects. Twenty-eight (53.8%) of the alar ligaments could not be seen within one slice of the standard coronal imaging plane but could adequately be visualized in an oblique reconstruction adapted to the orientation of the ligaments on the axial slices. Inter-reader correlation for visibility on MR imaging (MRI) of the internal craniocervical ligaments was high (left+right side, kappa=0.95). Most (94%) alar ligaments presented symmetrically. In the axial plane, 60% were oriented neutral and 40% had a backward orientation. In the coronal plane, 67% were oriented caudocranially and 33% were oriented horizontally. The shape of the ligaments was parallel in half and was V-shaped in the other half. The alar ligaments had homogeneous low-signal intensity in 56% and heterogeneous low-signal intensity in 44%. The apical ligament of the dens was seen (excellent–good–moderate) in 61% (reader 1) and 52% (reader 2). The tectorial membranes and the transverse ligament of the atlas were shown (excellent–good) in all subjects.

Conclusions

MRI with acquisition of an isotropic SPACE technique allows high-resolution imaging of the craniocervical ligaments in all orientations. Reconstruction of the image data in the variable orientation of the alar ligaments allowed for excellent depiction within one slice such that partial volume artifacts that hamper image analysis can be eliminated.  相似文献   
993.

Introduction

The bolus-tracking (BT) technique is the most popular perfusion-weighted (PW) dynamic susceptibility contrast MRI method used for estimating cerebral blood flow (CBF), cerebral blood volume and mean transit time. The BT technique uses a convolution model that establishes the input–output relationship between blood flow and the vascular tracer concentration. Singular value decomposition (SVD)- and Fourier transform (FT)-based deconvolution methods are popular and widely used for estimating PW MRI parameters. However, from the published literature, it appears that SVD is more widely accepted than other methods. In a previous article, an FT-based minimum mean-squared error (MMSE) technique was proposed and simulation experiments were performed to compare it with the well-established circular SVD (oSVD) method. In this study, the FT-based MMSE method has been used to estimate relative CBF (rCBF) in 13 patients with white matter lesions (WMLs) (leukoaraiosis), and results are compared with the widely used oSVD method.

Materials and Methods

Thirteen patients with leukoaraiosis were imaged on a 1.5-T Siemens whole-body scanner. After acquiring the localizer and structural scans consisting of FLAIR (fluid attenuated with inversion recovery), T1-weighted and T2-weighted images, perfusion study was implemented as part of the MRI protocol. For each patient and method, two values were calculated: (a) rCBF for normal white matter (NWM) ROI, obtained by dividing the average CBF value in NWM ROI with average CBF in gray matter (GM) ROI, and (b) rCBF for WML ROI, obtained by dividing the average CBF value in WML ROI with average CBF in GM ROI. Results for the two deconvolution methods were computed.

Results and Discussion

A significant (P<.05) decrease in estimated rCBF was observed in the WML in all the patients using the MMSE method, while for the oSVD method, the decrease was observed in all but one patient. Initial results suggest that the MMSE method is comparable to the oSVD method for estimating rCBF in NMW while it may be better than oSVD for estimating rCBF in lesions of low flow. Studies involving a larger patient population may be required to further validate the findings of this work.  相似文献   
994.
Although it has been shown that the phase of the MR signal from the brain is particularly prone to variation due to respiration, the overall physiological information contained in phase time series is not well understood. Here, we explore the different physiological processes contributing to the phase time series noise, identify their spatiotemporal characteristics and examine their relationship to BOLD-related and non-BOLD-related physiological noise in the magnitude time series. This was performed by manipulating the contribution of physiological noise to the total signal variance by modulating the TE and voxel volume, and using a short TR in order to adequately sample physiological signal fluctuations. The phase and magnitude signals were compared both before and after removal of signal fluctuations at the primary respiratory and cardiac frequencies with RETROICOR. We found that the temporal phase noise increased with TE at a faster rate than predicted by 1/TSNR as a result of physiological noise. As suggested by previous studies, the primary contributor to phase physiological noise was respiration-related effects which were manifested at a large scale (>1 cm). Notably, RETROICOR removed respiration-related large-scale artifacts and this resulted in considerable improvements in the temporal phase stability (7–90%). Physiological noise in the magnitude time series after RETROICOR consisted of low-frequency BOLD-related fluctuations (<0.13 Hz) localized to gray matter and the vasculature, and fluctuations in the vasculature correlated with slow (<0.1 Hz) variations in respiration volume and cardiac rhythm. Physiological noise in the phase signal after RETROICOR also occurred in frequencies below 0.13 Hz and was consistent with (1) residual large-scale magneto-mechanical effects correlated with slow variations in respiration volume and cardiac rhythm over time, and (2) local scale (<1 cm) effects localized in gray matter and vasculature most likely due to vascular dephasing mediated by a BOLD susceptibility change. While BOLD-related magnitude noise exhibited a TE dependence similar to BOLD, the ‘BOLD-related’ noise in the phase data increased with increasing TE and thus caused the overall phase noise to increase at a faster rate with TE than predicted by 1/TSNR. Interestingly, the spatial specificity of this effect was more evident for the higher resolution phase data, as opposed to the magnitude data, suggesting that at a higher spatial resolution the phase signal may contain more information on physiological processes than the magnitude signal.  相似文献   
995.
For two decades, methods for the synthesis and characterization of dendrimers based on [1,3,5]-triazine have been advanced by the group. Motivated by the desire to generate structural complexity on the periphery, initial efforts focused on convergent syntheses, which yielded pure materials to generation three. To obtain larger generations of dendrimers, divergent strategies were pursued using iterative reactions of monomers, sequential additions of triazine and diamines, and ultimately, macromonomers. Strategies for the incorporation of bioactive molecules using non-covalent and covalent strategies have been explored. These bioactive materials included small molecule drugs, peptides, and genetic material. In some cases, these constructs were examined in both in vitro and in vivo models with a focus on targeting prostate tumor subtypes with paclitaxel conjugates. In the materials realm, the use of triazine dendrimers anchored on solid surfaces including smectite clay, silica, mesoporous alumina, polystyrene, and others was explored for the separation of volatile organics from gas streams or the sequestration of atrazine from solution. The combination of these organics with metal nanoparticles has been probed. The goal of this review is to summarize these efforts.  相似文献   
996.
The 1H double-quantum filtered (DQF) NMR and DQF MRI is applied to the joint tissues of rabbits for selective visualization of tendons, menisci and articular cartilage. The 1H DQF NMR selectively filters double-quantum coherence arising from the 1H dipolar interaction of the “bound” water in these tissues. The double-quantum creation time dependency of the DQF signal intensity is determined by the molecular environment of the “bound” water. Therefore, each tissue has a unique creation time at which the DQF signal reaches its maximum intensity, τmax (Achilles tendon: 0.46 ± 0.02 ms, patella: 0.55 ± 0.8 ms, anterior cruciate ligament: 0.60 ± 0.05 ms, meniscus: 0.78 ± 0.02 ms, skin: 0.81 ± 0.07 ms). We have presented the creation-time-contrasted DQF images of the meniscus, patella, foot, and knee joint. Compared with conventional T2*-weighted gradient-echo (GRE) MR images, tendons, ligaments, menisci, and articular cartilage were more clearly seen in the DQF MR images. All these tissues were distinctly discriminated from each other by their creation times. DQF MR images of foot and knee joints can selectively demonstrated tendons, ligaments, and cartilage, which make it easier to understand the complicated anatomic structure of joints. Because the DQF NMR signal intensity and τmax are sensitive to the order structure of the “bound” water, it might be possible to introduce the creation-time dependent-contrast of 1H DQF MR images as a new tool for analyzing the changes in the ordered structure of the tissue.  相似文献   
997.
Characterization of native GTP‐bound Ras is important for an appreciation of its cellular signaling and for the design of inhibitors, which however has been depressed by its intrinsic instability. Herein, an effective approach for extending the lifetime of Ras?GTP samples by exploiting the active role of Son of Sevenless (Sos) is demonstrated that sustains the activated state of Ras. This approach, combined with a postprocessing method that suppresses residual Ras?GDP signals, is applied to the site‐resolved NMR measurement of the allosteric dynamics of Ras?GTP. The observed network of concerted motions well covers the recently identified allosteric inhibitor‐binding pockets, but the motions are more confined than those of Ras?GppNHp, advocating the use of native GTP for development of allosteric inhibitors. The Sos‐based approach is anticipated to generally facilitate experiments on active Ras when native GTP is preferred.  相似文献   
998.
以聚乙烯亚胺(PEI)为添加剂,在聚乙二醇(PEG)中高温热解乙酰丙酮铁(Fe(acac)3)合成超顺磁性氧化铁纳米粒子(PEI/PEG-SPIONs),再与钙离子螯合剂EGTA分别通过物理混合法和EDC/sulfo-NHS化学法合成了对钙离子敏感的磁共振成像(MRI)造影剂EGTA-SPIONs/P(物理混合)和EGTA-SPIONs/C(化学法).PEI/PEG-SPIONs、EGTA-SPIONs/P和EGTA-SPIONs/C分散于HEPES缓冲液中的电泳粒度分别为27.6±3.2 nm、32.1±5.2 am和36.1±4.8nm;加入Ca2后EGTA-SPIONs/P和EGTA-SPIONs/C的平均电泳粒度均趋于变大,呈双峰分布,再加入EDTA后,平均电泳粒度又都趋于减小.MRI测试结果表明,当Ca2浓度从0.8 mmol/L增加到1.2mmol/L时,EGTA-SPIONs/P和EGTA-SPIONs/C样品的T2值分别增加了33;和33.5;;将0.8 mmol/L EDTA加入混合0.8 mmol/L Ca2+的EGTA-SPIONs/P和EGTA-SPIONs/C的分散液中,其T2值分别降低了14;和42;.EGTA-SPIONs/P及EGTA-SPIONs/C对Ca2浓度的增加均有反映,但Ca2+@EGTA-SPIONs/P的EDTA逆转效果不如Ca2+@EGTA-SPIONs/C的明显,化学法合成的EGTA-SPIONs/C更适合作为钙离子敏感剂.  相似文献   
999.
介绍了一种用于开放式MRI系统的射频发射线圈. 此发射线圈为上下2个相同的线圈,分别安装在磁体的2极,两线圈采用非对称的正交方式放置. 线圈为矩形螺线管结构,通过电磁场数值计算的方法对线圈的匝间距进行了优化,使线圈在300 mm的球形区域内达到偏差不超过3 dB的均匀性要求. 根据优化结果制作了一套用于0.23 T开放式MRI系统的发射线圈,并对线圈的均匀性及射频发射的效率进行了测试. 测试结果表明,线圈具有较高的发射效率和较好的均匀性,由此验证了设计方案的可行性.  相似文献   
1000.
大鼠眼球的高场磁共振成像研究   总被引:1,自引:0,他引:1  
该文旨在研究微型磁共振(MRI)对大鼠眼球的成像效果和应用. 通过对10只SD大鼠的20只眼球进行7.0 T MRI检查,应用常规T1WI和T2WI序列高分辨率扫描;观察MRI图像上大鼠眼球的结构,并比较MRI测量与组织学显微镜下测量视网膜厚度结果. 磁共振扫描清楚地显示了所有受试大鼠眼球的主要结构,包括角膜、晶状体、玻璃体、视网膜、巩膜、虹膜、睫状体、视神经. 球壁结构磁共振图像层次与组织学结构层次有良好对应性; 磁共振视网膜厚度测量值与显微镜下视网膜厚度测量数据进行配对 t 检验,P>0.05,二者无显著差异. 由此得出的结论是小动物MRI可以对大鼠眼球细微解剖结构进行无创性的成像,为我们提供了一个研究大鼠眼科疾病模型的形态学及功能变化的手段.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号