首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   38篇
  国内免费   70篇
化学   838篇
晶体学   13篇
力学   4篇
物理学   177篇
  2024年   2篇
  2023年   20篇
  2022年   12篇
  2021年   7篇
  2020年   23篇
  2019年   17篇
  2018年   22篇
  2017年   21篇
  2016年   27篇
  2015年   34篇
  2014年   29篇
  2013年   65篇
  2012年   86篇
  2011年   60篇
  2010年   48篇
  2009年   54篇
  2008年   49篇
  2007年   47篇
  2006年   58篇
  2005年   64篇
  2004年   52篇
  2003年   31篇
  2002年   24篇
  2001年   15篇
  2000年   29篇
  1999年   20篇
  1998年   19篇
  1997年   16篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   13篇
  1992年   10篇
  1991年   19篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1975年   2篇
排序方式: 共有1032条查询结果,搜索用时 0 毫秒
51.
Phosphorylation of phenols with diethyl cyanophosphonate in methylene chloride solution at 0°C is an easy, rapid and good yielding reaction.  相似文献   
52.
Solvothermal Synthesis and Crystal Structure Determination of AgBiI4 and Ag3BiI6 AgBiI4 and Ag3BiI6 were synthesized by solvothermal reaction from AgI and BiI3 in diluted HI‐solution (20 %) at a temperature of 160 °C. The greyish‐black crystals grow as octahedra (AgBiI4) or hexagonal/trigonal platelets (Ag3BiI6). AgBiI4 crystallizes in space group Fd3¯m with a = 1222.3(1) pm (300 K) and Z = 8 whereas Ag3BiI6 shows the space group R3¯m with a = 435.37(6) pm, c = 2081.0(4) pm (300 K) and Z = 1. Both crystal structures show stacking sequence abcabc… of hexagonal layers containing Iodine. Bismuth and silver are sharing octahedral sites with different mass ratio in both structures. The part of silver which could be localized varies with temperature. This behaviour indicates mobility of silver within the crystal structure. The ionic conductivity of AgBiI4 is explored. AgBiI4 and Ag3BiI6 show close structural relationship, with AgBiI4 as a variant with a higher degree of order.  相似文献   
53.
Hypervalent organobismuth compounds, 6-tert-butyl-5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocines, with 13 different substituents on the bismuth atom including halogens, alkyl, alkenyl, alkynyl, aryl, or phenylthio groups have been synthesized. A key compound, 12-chloro-6-tert-butyl-5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine, which is a precursor for other azabismocines, has been synthesized by two different procedures; one is based on Akiba’s method using 2-bromobenzylbromide as one of the starting materials and the other is a newly developed one using a cheaper starting material, 2-chlorobenzyl chloride. The structures of 12 new bismuth compounds were determined by X-ray diffraction. The eight-membered tetrahydroazabismocine ring has proved to be highly flexible and the hypervalent Bi-N bond distances vary ranging from 2.568(3) to 2.896(5) Å, depending on the electronic nature of the substituents on the bismuth atom. The Bi-N bond distances have good linear relationship against Hammett’s σm constants.  相似文献   
54.
《Analytical letters》2012,45(14):2611-2623
Abstract

A new epoxy-urea chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of trace Bi(III), In(III), Sn(IV), Zr(IV), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be enriched at pH 5 at a flow rate of 1–4 ml/min, and can be also desorbed with 10 mL of 2 M HCl +0.1g NH4F solution from the resin column, with recoveries over 97%. The chelating resin reused 6 times can still adsorb quantitatively the Bi, In, Sn, Zr, V and Ti ions, and eighty to thousand-fold excesses of Ca(II), Mg(II), Cu(II), Zn(II), Al(III), Sb(III), Ni(II), Mn(II) and Fe(III) cause little interference with the enrichment and determination of these ions. The RSDs of the proposed method for the determination of 500–50 ng/ml Bi, In and Sn, 50–5.0 ng/ml Zr, V and Ti were in the range of 0.4 ~ 4.0%, the enrichment factor of the resin for the ions is in the range of 10–100. The recoveries of added standard in waste water are between 96% and 100%, and the concentration of each ion in alloy steel sample determined by the method is in good agreement with the reference value analyzed by a steel plant with average error <2.8%.  相似文献   
55.
Melting reactions of copper, CuI, selenium, and Bi2Se3 yielded black, shiny needles of Cu4BiSe4I = Cu4BiSe2(Se2)I. The compound decomposes peritectically above 635(5) K and crystallizes in the orthorhombic space group Pnma with a = 960.1(1) pm, b = 413.16(3) pm, and c = 2274.7(2) pm (T = 293(2) K). In the crystal structure, strands ${1}\atop{{\infty}}$ [BiSeSe2/2(Se2)2/2]3– run along [010]. Therein, the bismuth(III) cation is coordinated by five selenium atoms, which form a square pyramid. The copper(I) cations are coordinated tetrahedrally by selenide, diselenide and iodide ions. Edge‐sharing of these tetrahedra results in zigzag chains of copper cations with short distances of 262.7(4) pm. Enhanced dispersion of the 3d bands, the Crystal Orbital Hamilton Populations (COHP), and disynaptic ELI‐D basins indicate weakly attractive d10···d10 interactions between the copper cations. The semiconducting properties and the calculated electronic band structure suggest an electron‐precise compound. In copper‐deficient Cu3.824(8)BiSe4I, the Cu···Cu distances are 5 pm shorter, and Raman spectroscopy indicates the presence of diselenide(1–) radical anions besides the diselenide(2–) groups. As a result, in Cu3.824(8)BiSe4I, selenium coexists in the oxidations states –II, –I, and –0.5.  相似文献   
56.
Kadara RO  Tothill IE 《Talanta》2005,66(5):1089-1093
As copper(II) is a common ion in a variety of analytical samples, its effect on the stripping response of lead(II) at bismuth film screen-printed carbon electrode (BFSPCE) was investigated. The study was conducted using a screen-printed three-electrode system (working, counter and reference electrodes), with the carbon-working electrode plated in situ with bismuth film. Copper present at significant concentration level in samples was found to affect the sensitivity of the electrode by reducing the constant current stripping chronopotentiometric (CCSCP) response of lead(II). Recovery of the lead stripping response at the BFSPCE in the presence of copper was obtained when 0.1 mM ferricyanide was added to the test solution. The ferricyanide added circumvents the detrimental effect of copper(II) by selectively masking the copper ions by forming a complex. The analytical utility of the procedure is illustrated by the stripping chronopotentiometric determinations of lead(II) in soil extracts.  相似文献   
57.
Bright red crystals of [Mn(H2O)6][BiI4]2 · 2H2O are obtained from a solution of MnI2, BiI3, and I2 in absolute ethanol, which is exposed to humid air. Reversible dehydratization sets in at about 50 °C. Added water decomposes the hydrate by irreversible precipitation of BiOI. The optical bandgap is about 1.9(1) eV. X‐ray diffraction on a single‐crystal revealed a monoclinic lattice (space group P21/c) with a = 760.39(4) pm, b = 1315.6(1) pm, c = 1398.37(7) pm, and β = 97.438(4)°. In the crystal structure zigzag chains of edge‐sharing [BiI2/1I4/2] octahedra and linear strings of H2O‐bridged [Mn(H2O)6]2+ octahedra run parallel [100].  相似文献   
58.
59.
Three novel sandwich‐type polyoxotungstates ( 1 – 3 ) were synthesized in good yield using an in‐situ conventional solution synthesis method by reaction in aqueous media below 80 °C. Compounds 1 – 3 represent the first structurally characterized β‐B‐BiW9 sandwich‐type polyoxometalates with triethanolamine cations. All three compounds have the same building unit [(X(H2O)3)2(X0.5W0.5O)2(β‐B‐BiW9O33)2)]10– [X = MnII ( 1 ), CoII ( 2 ), NiII ( 3 )]. The adjacent units of 1 or 2 are joined by Na+ cations in different ways to construct 1D chains or 2D sheets. A 3D supramolecular structure is further formed by hydrogen bond interactions among water molecules and protonated triethanolamine cations. Meanwhile only compound 3 shows a 0D structure. The compounds were characterized by elemental analysis, IR spectroscopy, TG analysis, and single‐crystal X‐ray diffraction. Magnetic measurements on a sample of 1 show the presence of paramagnetic interactions.  相似文献   
60.
A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at −1.4 V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from −1.4 to −0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the10-100 μg L−1 range, with a detection limit of 93, 54, and 396 ng L−1 for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号