首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2568篇
  免费   368篇
  国内免费   79篇
化学   2305篇
晶体学   5篇
力学   49篇
综合类   4篇
数学   19篇
物理学   633篇
  2024年   5篇
  2023年   50篇
  2022年   77篇
  2021年   83篇
  2020年   98篇
  2019年   114篇
  2018年   63篇
  2017年   110篇
  2016年   154篇
  2015年   174篇
  2014年   180篇
  2013年   247篇
  2012年   204篇
  2011年   180篇
  2010年   162篇
  2009年   143篇
  2008年   157篇
  2007年   144篇
  2006年   143篇
  2005年   109篇
  2004年   102篇
  2003年   78篇
  2002年   33篇
  2001年   25篇
  2000年   22篇
  1999年   30篇
  1998年   28篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   11篇
  1993年   8篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有3015条查询结果,搜索用时 0 毫秒
991.
One of the challenges for fluorescent sensors is to reduce their target environment size from a micrometer scale, such as biological cells, to a nanometer scale. Proton maps near membranes are of importance in bioenergetics and are the first goal in nanometer-scale analysis with fluorescent sensors. Thirty-three fluorescent photoinduced-electron-transfer pH sensors bearing an environment-sensitive benzofurazan fluorophore and having different hydrophobicity/hydrophilicity and hydrogen-bonding abilities were prepared. These sensors were scattered in nanospaces associated with anionic and cationic micelles as model membranes to indicate proton availability and polarity in local spaces. Gathering the data from the sensors allowed the successful drawing of proton maps near anionic and cationic micelles, in which electrostatic attraction/repulsion of protons by the charged head groups of micelles and dielectric suppression of protons were clearly observed.  相似文献   
992.
In the present study, the carbazole and 2,3,3-triphenylacrylonitrile (TPAN) nanostructures (2-CTPAN and 2,2′-CTPAN) have been designed and synthesized by Pd-catalyzed Sonogashira cross-coupling reaction. CTPAN exhibit aggregation-induced emission enhancement (AIEE) behavior in water with high fluorescence quantum yield. Both the compounds show tunable self-assembly in water as well as in N,N-dimethylformamide (DMF) by extended π–π stacking interactions. CTPAN can be self-assembled into spherical particles in water and the structures of these self-assemblies have been investigated using X-ray diffraction. Interestingly, 2-CTPAN and 2,2′-CTPAN form organogels with a critical gelation concentration (CGC) of 11 and 15 mg mL−1, respectively, in DMF and exhibit acicular and rod shaped morphology, respectively. The single-crystal structure of 2-CTPAN shows that the intermolecular C−H⋅⋅⋅π interactions lock the molecular conformation into a staircase-shaped supramolecular assembly. These AIEE active compounds reveal high water dispersibility, strong yellow fluorescence with high quantum yield, promising photostability and excellent biocompatibility, which make them potential bioimaging agents.  相似文献   
993.
This communication reports novel luminescent rhenium(I)–polypyridine complexes appended with a perylene diimide (PDI) or benzoperylene monoimide (BPMI) moiety through a non-conjugated linker. The photophysical and photochemical properties originating from the interactions of the metal polypyridine and perylene units were exploited to afford new cellular reagents with thiol-sensing capability and excellent photocytotoxic activity.  相似文献   
994.
The present study reports the wireless technique that generates asymmetric reactivity on the surface of the conducting substrate without any direct electrical connection in the electrolyte solution by inducing external power. In recent years, bipolar electrochemical systems have received special attention that they are used for new kinds of electrochemical applications ranging from electrodeposition to electroanalytical chemistry. Bipolar electrochemistry is a unique technique because of the lack of direct electrical connection to the bipolar electrode. In this perspective article, we first illustrate the concept and history of the bipolar electrochemistry as well as their application based on the open and closed bipolar configuration in different fields.  相似文献   
995.
Although metal‐ion‐binding interlocked molecules have been under intense investigation for over three decades, their application as scaffolds for the development of sensors for metal ions remains underexplored. In this work, we demonstrate the potential of simple rotaxanes as metal‐ion‐responsive ligand scaffolds through the development of a proof‐of‐concept selective sensor for Zn2+.  相似文献   
996.
《化学:亚洲杂志》2018,13(16):2019-2022
Fluoride (F) ion sensing is an important topic due to its roles in health, medical, and environmental sciences. In this regard, colorimetric sensors with a near infrared (NIR) optical response are useful in biological systems because they can avoid interference from endogenous chromophores. Although calix[n]phyrins are highly attractive as sensors with the NIR optical response, studies on calix[n]phyrins are still limited owing to their intrinsic instability against ambient light and air. In this study, we report the synthesis and characterization of a new calix[5]phyrin bearing one sp3‐hybridized carbon atom as a π‐expanded calix[n]phyrin. Upon addition of tetrabutylammonium fluoride, the calix[5]phyrin exhibited distinct NIR absorptions at 908 and 1064 nm as well as a visible color change. Importantly, it revealed an excellent selectivity for F ion. These results demonstrate that calix[5]phyrins are promising colorimetric and NIR sensors of F ion.  相似文献   
997.
埋入式封装的光纤光栅传感器应变传递分析   总被引:25,自引:0,他引:25  
李东升  李宏男 《力学学报》2005,37(4):435-441
推导了布拉格光纤光栅传感器所测应变与实际结构应变的关系,得出了平均应变传递率并与实际试验结果进行比较. 根据应变传递率确定了光纤的临界粘接长度,并推导了多层粘接时的应变传递情况,讨论了影响应变传递率的因素. 结果表明,光纤光栅的粘贴长度必须大于临界粘贴长度,且光纤光栅传感器所测应变需要加以修正才能得到实际结构应变.  相似文献   
998.
For the design of space missions in the Moon and planets, analysis of mobility in robots is crucial and poor planning has led to abortion of missions in the past. To mitigate the risk of mission failure, improved algorithms relying intrinsically on fusing visual odometry with other sensory inputs are developed for slip detection and navigation. However, these approaches are significantly expensive computationally and difficult to meet for future space exploration robots. Hence, today the central question in the field is how to develop a novel framework for in situ estimation of rover mobility with available space hardware and low-computational demanding terramechanics predictors. Ranging from pure simulations up to experimentally validated studies, this paper surveys dozens of existing methodologies for detection of vehicle motion performance (wheel forces and torques), surface hazards (slip-sinkage) and other parameters (soil strenght constants) using classical terramechanics maps, and compare them with novel approaches introduced by machine learning, allowing to establish future directions of research towards distributed exteroceptive and proprioceptive sensing for visionless exploration in dynamic environments. To avoid making it challenging to collect all relevant studies expeditiously, we propose a global classification of terramechanics according most common practices in the field, allowing to form an structured framework that condense most works in the domain within three estimator categories (direct/forward or inverse terramechanics, and slip estimators). Likewise, from the experiences collected in previous MER (Mars Exploration Rover) missions, five overlooked problems are documented that will need to be addressed in next generation of planetary vehicles, along three research questions and few hypothesis that will pave the road towards future applications of machine learning-based terramechanics.  相似文献   
999.
We present a method for estimating the net traction and resistive wheel torques for a suspensionless, differential-steered robot on rigid or deformable terrain. The method, based on extended Kalman-Bucy filtering (EKBF), determines time histories of net traction and resistive wheel torques and wheel slips during steady or transient maneuvers. This method assumes good knowledge of the vehicle dynamics and treats the unknown forces and moments due to terrain response as random variables to be estimated. A proprioceptive sensor suite renders a subset of the unknown forces and associated wheel slip and slip angles observable. This methodology decouples semi-empirical terramechanics models from the net effect of the vehicle-terrain interaction, namely the net traction developed by the vehicle on the terrain. By collecting sensor data and processing data off-line, force-slip characteristics are identified irrespective of the underlying terramechanics. These characteristics can in turn support development or validation of terramechanics models for the vehicle-terrain system. For autonomous robots, real-time estimates of force-slip characteristics can provide setpoints for traction and steering control, increasing vehicle performance, speed, and maneuverability. Finally, force-slip estimation is the first step in identifying terrain parameters during normal maneuvering. The methodology is demonstrated through both simulation and physical testing using a 13-kg robot.  相似文献   
1000.
超分子在质量敏感压电化学传感器中的应用   总被引:8,自引:0,他引:8  
以质量敏感为分析基础的压电化学传感器,其表面涂层往往决定其对分析物的选择性。超分子作为压电石英晶体涂层,应用主-客体分子识别的原理,显著提高压电化学传感器的选择性。该文详细论述了近十年有关超分子主体化合物在体波和表面波化学传感器的应用,并了涂膜技术及主-客体识别机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号