首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2414篇
  免费   239篇
  国内免费   223篇
化学   2442篇
晶体学   11篇
力学   11篇
综合类   36篇
数学   84篇
物理学   292篇
  2024年   15篇
  2023年   63篇
  2022年   236篇
  2021年   212篇
  2020年   165篇
  2019年   133篇
  2018年   138篇
  2017年   115篇
  2016年   140篇
  2015年   100篇
  2014年   135篇
  2013年   246篇
  2012年   126篇
  2011年   96篇
  2010年   104篇
  2009年   87篇
  2008年   110篇
  2007年   100篇
  2006年   97篇
  2005年   86篇
  2004年   71篇
  2003年   68篇
  2002年   47篇
  2001年   36篇
  2000年   21篇
  1999年   18篇
  1998年   19篇
  1997年   13篇
  1996年   16篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2876条查询结果,搜索用时 0 毫秒
101.
Tieguanyin is one of the top ten most popular teas and the representative of oolong tea in China. In this study, a rapid and non-destructive method is developed to detect adulterated tea and its degree. Benshan is used as the adulterated tea, which is about 0%, 10%, 20%, 30%, 40%, and 50% of the total weight of tea samples, mixed with Tieguanyin. Taking the fluorescence spectra from 475 to 1000 nm, we then established the 2-and 6-class discriminant models. The 2-class discriminant models had the best evaluation index when using SG-CARS-SVM, which can reach a 100.00% overall accuracy, 100.00% specificity, 100% sensitivity, and the least time was 1.2088 s, which can accurately identify pure and adulterated tea; among the 6-class discriminant models (0% (pure Tieguanyin), 10, 20, 30, 40, and 50%), with the increasing difficulty of adulteration, SNV-RF-SVM had the best evaluation index, the highest overall accuracy reached 94.27%, and the least time was 0.00698 s. In general, the results indicated that the two classification methods explored in this study can obtain the best effects. The fluorescence hyperspectral technology has a broad scope and feasibility in the non-destructive detection of adulterated tea and other fields.  相似文献   
102.
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided.  相似文献   
103.
Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.  相似文献   
104.
Porous organic polymers have an open architecture, excellent stability, and tunable structural components, revealing great application potential in the field of fluorescence imaging, but this part of the research is still in its infancy. In this study, we aimed to tailor the physical and chemical characteristics of indocyanine green using sulfonic acid groups and conjugated fragments, and prepared amino-grafted porous polymers. The resulting material had excellent solvent and thermal stability, and possessed a relatively large pore structure with a size of 3.4 nm. Based on the synergistic effect of electrostatic bonding and π–π interactions, the fluorescent chromogenic agent, indocyanine green, was tightly incorporated into the pore cavity of POP solids through a one-step immersion method. Accordingly, the fluorescent chromogenic POP demonstrated excellent imaging capabilities in biological experiments. This preparation of fluorescent chromogenic porous organic polymer illustrates a promising application of POP-based solids in both fluorescence imaging and biomedicine applications.  相似文献   
105.
阻抑动力学光度法测定痕量铜   总被引:5,自引:0,他引:5  
在pH 4.5的HAc-NaAc缓冲溶液中, 痕量铜对KBrO3氧化亮绿SF的褪色反应有明显的阻抑作用, 据此建立了测定痕量铜的新方法. 方法的线性范围为0.004~0.048 μg/mL, 检出限为8.63×10-4 μg/mL, 已用于人发中铜的测定.  相似文献   
106.
(1) Background: The control of mosquitoes with essential oils is a growing demand. (2) Methods: This study evaluated the novel larvicidal and adulticidal activity of fennel and green tea oils and their nanostructured lipid carriers (NLC) against Culex pipiens (C. pipiens) in the laboratory, field conditions and evaluated their effect against non-target organisms. SLN type II nanoformulations were synthesized and characterized using dynamic light scattering (DLS), zeta potential and transmission electron microscope. (3) Results: The synthesized NLCs showed spherical shaped, homogenous, narrow, and monomodal particle size distribution. The mortality percent (MO%) post-treatment (PT) with 2000 ppm for 24 h with fennel oil and NLC fennel (NLC-F) reached 85% (LC50 = 643.81 ppm) and 100% (LC50 = 251.71), whereas MO% for green tea oil and NLC green tea (NLC-GT) were 80% (LC50 = 746.52 ppm) and 100% (LC50 = 278.63 ppm), respectively. Field trial data showed that the larval reduction percent of fennel oil and NLC-F reached 89.8% and 97.4%, 24 h PT and the reduction percent of green tea oil and NLC-GT reached 89% and 93%, 24 h PT with persistence reached 8 and 7 days, for NLC-F and NLC-GT, respectively. The adulticidal effects showed that NLC-F and NLC-GT (100% mortality) were more effective than fennel and green tea oils (90.0% and 83.33%), with 24 h PT, respectively. Moreover, their reduction of adult density after spraying with LC95 X2 for 15 min, with fennel oil, NLC-F, and green tea oil, NLC-GT were 83.6%, 100%, 79.1%, and 100%, respectively, with persistence (>50%) lasting for three days. The predation rate of the mosquitofish, Gambusia affinis, and the bug, Sphaerodema urinator, was not affected in both oil and its NLC, while the predation rate of the beetle, Cybister tripunctatus increased (66% and 68.3%) by green tea oil and NLC-GT, respectively. (4) Conclusions: NLCs nanoformulation encapsulated essential oils was prepared successfully with unique properties of size, morphology, and stability. In vitro larvicidal and adulticidal effects against C. pipiens supported with field evaluations have been performed using essential oils and their nanoformulations. The biological evaluation of nanoformulations manifested potential results toward both larvicidal and adulticidal compared to the essential oils themselves, especially NLC encapsulated fennel oil which had promising larvicidal and adulticidal activity.  相似文献   
107.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   
108.
降雨对532nm和1064nm激光传输的衰减特性研究   总被引:3,自引:1,他引:3  
降雨会对激光信号产生严重的衰减,从而给激光目标探测的应用带来一定影响.激光在降雨中的传输衰减已在红外波段做了大量的实验研究,而可见光波段激光在雨中的传输衰减特性还未见报道.基于夫琅禾费衍射和几何光学散射理论,建立雨滴对532 nm绿激光和1064 nm近红外激光光束的传输衰减模型,对比分析两波长激光在不同降雨量下的衰减...  相似文献   
109.
针对绿色供应商选择过程中,评价指标数量明显超过可供选择的供应商数量且指标之间存在优序关系等特点,提出了基于中智犹豫模糊语言优先QUAL-IFLEX方法的绿色供应商选择方法.首先,利用中智犹豫模糊语言表征评价信息和评价权重;其次,构造优先矩阵对指标权重做精确化处理,考虑到决策者对指标的要求和指标之间的优序关系,对指标权重...  相似文献   
110.
One-step green route to narrowly dispersed copper nanocrystals   总被引:1,自引:0,他引:1  
We report a total “green” chemical method in aqueous solution for synthesizing stable narrowly distributed copper nanoparticles with average diameter less than 5 nm in the presence of Polyvinylpyrrolidone (PVP) as a stabilizer and without any inert gas protection. In our synthesis route, ascorbic acid, natural vitamin C (VC), an excellent oxygen scavenger, acts as both reducing agent and antioxidant, to reduce the metallic ion precursor, and to effectively prevent the common oxidation process of the newborn pure copper nanoclusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号