排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
2.
Dr. Qaisar Nadeem Dr. Giuseppe Meola Dr. Henrik Braband Robin Bolliger Dr. Olivier Blacque Daniel Hernández-Valdés Prof. Dr. Roger Alberto 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(3):1213-1216
The labeling of (bio)molecules with metallic radionuclides such as 99mTc demands conjugated, multidentate chelators. However, this is not always necessary since phenyl rings can directly serve as integrated, organometallic ligands. Bis-arene sandwich complexes are generally prepared by the Fischer–Hafner reaction. In extension of this, we show that [99mTc(η6-C6R6)2]+-type complexes are directly accessible from water and [99mTcO4]−, even using arenes incompatible with Fischer–Hafner conditions. To unambiguously confirm the nature of these unprecedented 99mTc complexes, their rhenium homologous have been prepared by substituting naphthalene ligands in [Re(η6-C10H8)2]+ with the corresponding phenyl groups. The ease with which highly stable [99mTc(η6-C6R6)2]+ complexes are formed under standard labeling conditions enables a multitude of new potential imaging agents based on commercial pharmaceuticals or lead structures. 相似文献
3.
4.
Chen Qian Gang Wu Di Jiang Xiaona Zhao Hai‐Bo Chen Yunze Yang Xian‐Wei Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(13):4261-4264
The development of optical imaging techniques has led to significant advancements in single‐nanoparticle tracking and analysis, but these techniques are incapable of label‐free selective nanoparticle recognition. A label‐free plasmonic imaging technology that is able to identify different kinds of nanoparticles in water is now presented. It quantifies the plasmonic interferometric scattering patterns of nanoparticles and establishes relationships among the refractive index, particle size, and pattern both numerically and experimentally. Using this approach, metallic and metallic oxide particles with different radii were distinguished without any calibration. The ability to optically identify and size different kinds of nanoparticles can provide a promising platform for investigating nanoparticles in complex environments to facilitate nanoscience studies, such as single‐nanoparticle catalysis and nanoparticle‐based drug delivery. 相似文献
5.
Jiaguo Huang Yan Lyu Jingchao Li Penghui Cheng Yuyan Jiang Kanyi Pu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(49):17960-17968
Despite its high morbidity and mortality, contrast‐induced acute kidney injury (CIAKI) remains a diagnostic dilemma because it relies on in vitro detection of insensitive late‐stage blood and urinary biomarkers. We report the synthesis of an activatable duplex reporter (ADR) for real‐time in vivo imaging of CIAKI. ADR is equipped with chemiluminescence and near‐infrared fluorescence (NIRF) signaling channels that can be activated by oxidative stress (superoxide anion, O2.?) and lysosomal damage (N‐acetyl‐β‐d ‐glucosaminidase, NAG), respectively. By virtue of its high renal clearance efficiency (80 % injected doses after 24 h injection), ADR detects sequential upregulation of O2.? and NAG in the kidneys of living mice prior to a significant decrease in glomerular filtration rate (GFR) and tissue damage in the course of CIAKI. ADR outperforms the typical clinical assays and detects CIAKI at least 8 h (NIRF) and up to 16 h (chemiluminescence) earlier. 相似文献
6.
Antonio Fernandez Emily J. Thompson Jeffrey W. Pollard Takanori Kitamura Marc Vendrell 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(47):17050-17054
We report the novel chemical design of fluorescent activatable chemokines as highly specific functional probes for imaging subpopulations of immune cells in live tumours. Activatable chemokines behave as AND‐gates since they emit only after receptor binding and intracellular activation, showing enhanced selectivity over existing agents. We have applied this strategy to produce mCCL2‐MAF as the first probe for in vivo detection of metastasis‐associated macrophages in a preclinical model of lung metastasis. This strategy will accelerate the preparation of new chemokine‐based probes for imaging immune cell function in tumours. 相似文献
7.
8.
Liulin Wang Wei Du Zhangjun Hu Kajsa Uvdal Lin Li Wei Huang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(40):14164-14181
Fluorophores and probes are invaluable for the visualization of the location and dynamics of gene expression, protein expression, and molecular interactions in complex living systems. Rhodamine dyes are often used as scaffolds in biological labeling and turn‐on fluorescence imaging. To date, their absorption and emission spectra have been expanded to cover the entire near‐infrared region (650–950 nm), which provides a more suitable optical window for monitoring biomolecular production, trafficking, and localization in real time. This review summarizes the development of rhodamine fluorophores since their discovery and provides strategies for modulating their absorption and emission spectra to generate specific bathochromic‐shifts. We also explain how larger Stokes shifts and dual‐emissions can be obtained from hybrid rhodamine dyes. These hybrid fluorophores can be classified into various categories based on structural features including the alkylation of amidogens, the substitution of the O atom of xanthene, and hybridization with other fluorophores. 相似文献
9.
Xing Huang Detre Teschner Maria Dimitrakopoulou Alexey Fedorov Benjamin Frank Ralph Kraehnert Frank Rosowski Harry Kaiser Stephan Schunk Christiane Kuretschka Robert Schlgl Marc‐Georg Willinger Annette Trunschke 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(26):8801-8805
The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic‐scale study of metal–promoter interactions in silica‐supported Rh, Rh–Mn, and Rh–Mn–Fe catalysts by aberration‐corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh–Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh–Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided. 相似文献