首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59741篇
  免费   11459篇
  国内免费   2072篇
化学   60527篇
晶体学   874篇
力学   1508篇
数学   5320篇
物理学   5043篇
  2024年   2篇
  2023年   3篇
  2022年   44篇
  2021年   242篇
  2020年   574篇
  2019年   2393篇
  2018年   2281篇
  2017年   2726篇
  2016年   3023篇
  2015年   5319篇
  2014年   5046篇
  2013年   6855篇
  2012年   5522篇
  2011年   5165篇
  2010年   4212篇
  2009年   3985篇
  2008年   4298篇
  2007年   3607篇
  2006年   3340篇
  2005年   3188篇
  2004年   2613篇
  2003年   2376篇
  2002年   3015篇
  2001年   1497篇
  2000年   1357篇
  1999年   559篇
  1998年   7篇
  1997年   13篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
161.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   
162.
This study critically examines the similarities and differences between poly(ethylene oxide) (PEO) stabilized latices of polynorbornene and polybutadiene. Features such as the kinetics of copolymerization of norbornene and cyclooctadiene with a macromonomer of PEO, the particles' size and morphology, the type of copolymer formed, and the stability of these latices were investigated and the results obtained are considered. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2705–2716, 2004  相似文献   
163.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
164.
The crosslinking reaction of 1,2-polybutadiene (1,2-PB) with dicumyl peroxide (DCPO) in dioxane was kinetically studied by means of Fourier transform near-infrared spectroscopy (FTNIR). The crosslinking reaction was followed in situ by the monitoring of the disappearance of the pendant vinyl group of 1,2-PB with FTNIR. The initial disappearance rate (R0) of the vinyl group was expressed by R0 = k[DCPO]0.8[vinyl group]−0.2 (120 °C). The overall activation energy of the reaction was estimated to be 38.3 kcal/mol. The unusual rate equation was explained in terms of the polymerization of the pendant vinyl group as an allyl monomer involving degradative chain transfer to the monomer. The reaction mixture involved electron spin resonance (ESR)-observable polymer radicals, of which the concentration rapidly increased with time owing to a progress of crosslinking after an induction period of 200 min. The crosslinking reaction of 1,2-PB with DCPO was also examined in the presence of vinyl acetate (VAc), which was regarded as a copolymerization of the vinyl group with VAc. The vinyl group of 1,2-PB was found to show a reactivity much higher than 1-octene and 3-methyl-1-hexene as model compounds in the copolymerization with VAc. This unexpectedly high reactivity of the vinyl group suggested that an intramolecular polymerization process proceeds between the pendant vinyl groups located on the same polymer chain, possibly leading to the formation of block-like polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4437–4447, 2004  相似文献   
165.
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004  相似文献   
166.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   
167.
The reversible nonlinear conduction (RNC) in of high‐density polyethylene/acetylene carbon black composites with different degrees of crosslinking was studied above room temperature and below the melting point of high‐density polyethylene (HDPE). The experimental current density‐electric field strength curves can be overlapped onto a master curve, suggesting that the microscopic mechanisms for the appearance of RNC exist regardless of the ambient temperature and the crosslinking degree of the HDPE matrix. The relationship between the crossover current density and the linear conductivity can be explained in the framework of the dynamic random‐resistor‐network model. According to these results, two electron‐tunneling models are suggested to interpret the microscopic conduction behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1212–1217, 2004  相似文献   
168.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   
169.
The matrix formula developed in the context of heterochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical multicomponent polymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and the various concentrations associated with them. In free‐radical polymerization, the number of heterochain types, N, needs to be extrapolated to infinity, and such extrapolation is conducted with only three different N values. This matrix formula can be used as a benchmark test if other approximate approaches can give reasonable estimates of the weight‐average molecular weights. The moment equations with the average pseudo‐kinetic‐rate constants for branching and crosslinking reactions may provide poor estimates when the copolymer composition drift during polymerization is very significant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2801–2812, 2004  相似文献   
170.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号