首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   151篇
  国内免费   300篇
化学   962篇
晶体学   15篇
力学   4篇
综合类   8篇
数学   1篇
物理学   474篇
  2024年   2篇
  2023年   21篇
  2022年   37篇
  2021年   42篇
  2020年   45篇
  2019年   56篇
  2018年   54篇
  2017年   52篇
  2016年   67篇
  2015年   60篇
  2014年   70篇
  2013年   105篇
  2012年   79篇
  2011年   88篇
  2010年   66篇
  2009年   92篇
  2008年   92篇
  2007年   72篇
  2006年   85篇
  2005年   47篇
  2004年   40篇
  2003年   35篇
  2002年   32篇
  2001年   27篇
  2000年   24篇
  1999年   19篇
  1998年   18篇
  1997年   3篇
  1996年   9篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有1464条查询结果,搜索用时 62 毫秒
51.
利用溶胶凝胶法制备出一种三角形Au@TiO2核壳材料。经过水热晶化,该材料膨胀至300 nm,壳层TiO2晶化为介孔锐钛矿相,但核心三角形Au颗粒的形貌保持不变。采用粉末X射线衍射(PXRD)、ζ电位、高分辨透射电子显微镜(HRTEM)、热重分析(TGA)、光致发光(PL)光谱、光电流(i-t)以及光催化降解技术,对样品的结构和性能进行了系统、详细的检测与分析。经过晶化处理的Au@TiO2在可见光波段的光降解亚甲蓝性能比未晶化时有了显著的提升, 1 mg·mL-1 Au@c-TiO2可以在可见光照射1 h后实现对60 mg·L-1亚甲蓝全降解。电子顺磁共振(EPR)测试表明·O2-和·OH两种自由基对光降解起到了很大作用。通过综合分析实验结果和时域有限差分(FDTD)分析,探究了催化反应的机理。  相似文献   
52.
《印度化学会志》2022,99(11):100770
Individual and mix metal nanoparticles of Ag and Au have been prepared by the reducing method where citrate was used as reducing/stabilizing agent. The prepared NPs were characterized with UV/Visible and transmission electron microscopic (TEM) tools. The characteristic peak in UV/Visible at 525, 444 and 531 nm for Au, Ag and Ag/Au mix NPs respectively, gave primary confirmation of prepared NPs. TEM analysis showed the size of nanoparticles as 44.04, 19.78 and 30.93 nm for Ag, Au and Ag/Au mix NPs respectively. Congo and alizarin red dye interactions studies have been performed with prepared NPs to see the removal of the pollutants from water. Congo dye has shown weaker interaction as compared to alizarin due to structural symmetry. Amongst all, the AgNPs have shown maximum 67% and 75% interactions with Congo red and alizarin respectively due to high negative charges on the surface. The Au, Ag and Au/Ag mix NPs have shown stronger interaction with bovine serum albumin (BSA) protein up to 51, 59, 55% respectively, estimated through UV/Vis and physicochemical analysis. The biological evaluations of the prepared NPs have shown their antibacterial activity against Gram + ve and –ve species showing up to 9 cm zone of inhibition. The BSA interaction and antibacterial activity of NPs reveal the importance of NPs in medicinal field.  相似文献   
53.
A label-free DNA-based electrochemical biosensor owning high sensitivity and selectivity has been established for detecting bisphenol A in a wide range of applications. Coupling the high electrochemical performance of graphene oxide-thionine-Au nanomaterial with the specific binding capacity of the aptamers to BPA, the monitoring of trace amount of BPA was realized, the detection limit was 3.3 pg ⋅ mL−1 with strong anti-interference. Besides, using molecular docking, it was found that BPA binds to the bases DC-49, DC-51, DG-52, DG-53 and DA-63 on the aptamer via hydrogen bonding and π-π stacking interactions. Finally, the biosensor had been successfully applied in different real samples.  相似文献   
54.
黄葵  黄容姣  刘素琴  何震 《电化学》2022,28(7):2213006
电沉积作为一种在温和条件下从溶液中合成材料的技术已被广泛应用于在导体和半导体基底表面合成各种功能材料。电沉积一般由人为施加于基底的电刺激(如:施加电位/电流)来触发。这种电刺激通过氧化或还原靠近基底表面的溶液层内部的离子、 分子或配合物从而使该溶液层偏离其热力学平衡状态,随后引起目标产物在基底表面的沉积。在电沉积过程中, 许多实验参数都可能从不同的方面对沉积物的物化性质造成影响。迄今为止,已通过电沉积制备出多种单质(包括金属和非金属单质)、 化合物(例如:金属氧化物、金属氢氧化物、 金属硫化物等)以及复合材料。电沉积制备的这些材料大多为多晶、 织构或外延薄膜的形式。其中, 外延薄膜是一种具有特定的面外和面内晶体生长取向且其晶体取向受基底控制的类单晶薄膜。由于外延薄膜中高度有序的原子排列,它们常呈现出独特的电磁性质。本文总结了常见的电沉积合成路线及影响沉积物外延生长的关键实验因素。此外, 本文简要介绍了用于表征外延薄膜的技术。最后, 本文还讨论了一些采用电沉积制备的具有特殊电子、 电磁及光电特性的功能外延薄膜。  相似文献   
55.
This article reports a surface plasmon resonance (SPR) strategy capable of label-free yet amplified in situ immunoassays for sensitive and specific detection of human IgG (hIgG), a serum marker that is important for the diagnosis of certain diseases. Primarily, a wavelength-modulated Kretschman configuration SPR analyzer was constructed, and Au film SPR biosensor chips were fabricated. Specifically, based on Au nanoparticles (AuNPs) adsorbed on the surface of the Au film, the AuNP/Au film was coated with polydopamine (PDA) to fix streptavidin (SA), and then the biotinylated antibodies were connected to the surface of the biosensor chip. The SPR analyzer was utilized for in situ real-time monitoring of hIgG. Due to the immunological recognition between the receptor and target, the surface plasmon waves produced by the attenuated total reflection were affected by the changes in the surface of the biosensor chip. The resonance wavelength (λR) of the output spectra gradually redshifted, and the redshift degrees were directly related to the target concentration. The biosensor can realize the in situ detection of hIgG, displaying satisfactory sensitivity, excellent specificity and stability. Briefly, by monitoring the shift in λR after specific binding, a new SPR immunoassay can be customized for label-free, in situ and amplified hIgG detection. The operating principle of this research could be extended as a common protocol for many other targets of interest.  相似文献   
56.
Adsorption of dimethyl disulfide (DMDS) on gold colloidal nanoparticle surfaces has been examined to check its binding mechanism. Differently from previous results, DMDS molecules adsorbed on the gold surface at high concentration showed the S–S stretching band at 500 cm−1 in surface-enhanced Raman scattering (SERS) spectra, which indicates the presence of intact adsorption of DMDS molecules. However, it was found that the S–S bond of disulfides was easily cleaved on the gold surface at low concentration. These behaviors were not observed for diethyl disulfide (DEDS) or diphenyl disulfide (DPDS). Our results indicate that DMDS molecules with the shortest alkyl chains on the gold surface can be inserted into self-assembled monolayers (SAMs) without the S–S bond cleavage during self-assembly due to insufficient lateral van der Waals interaction and the low adsorption activity of disulfides, whereas DEDS with longer alkyl chains or DPDS with the weak disulfide bond dissociation energy would not. These unusual DMDS adsorption behaviors were examined by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). We also compared the bonding dissociation energy of the S–S bonds of various disulfides by means of a density functional theory (DFT) calculation.  相似文献   
57.
控制金属@MOF核壳纳米结构中金属纳米粒子的分布不容易实现。我们应用了合成MOF胶体粒子所用到的配位调制方法来合成Au@ZIF-8核壳纳米结构。通过使用过量的2-甲基咪唑和不同用量的1-甲基咪唑可获得不同的Au@ZIF-8。该合成方法可在ZIF-8纳米晶体中灵活调整Au纳米粒子(Au NPs)的分布。此外,我们分别研究了2种不同尺寸的荧光分子与Au@ZIF-8结合后的光致发光光谱和寿命。ZIF-8的孔径可以决定这2种分子是否可通过多孔壳结构接近Au NPs。分子光学特性对Au NPs近场的发光增强和荧光猝灭的竞争非常敏感。  相似文献   
58.
The PANI/Au0 nanocomposite films were successfully prepared on glassy carbon electrode (GCE) using a simple alternate adsorption of water soluble polyaniline (PANI) and . The growth of the films was monitored by UV? Vis spectroscopy and cyclic voltammetry. was in‐situ reduced in the film due to the redox interaction between PANI and , without extra reductant. The ultrafine Au nanoparticles with the size of 2–4 nm were observed by transmission electron spectroscopy. The existence of zero‐valence Au nanocrystals (Au0) was confirmed by X‐ray photoelectron spectroscopy, X‐ray Diffraction and FTIR. PANI in the nano‐structured PANI/Au0 composite films displayed a good redox activity in neutral pH solution. The as‐obtained PANI/Au0/GCE presents an excellent electrocatalytic activity to hydrazine oxidation, and the mechanism of hydrazine oxidation was studied. The calibration curve on (PANI/Au0)5/GCE was obtained in the concentration range of 0.01–6 mM with the detection limit of 1 µM (S/N>3). The modified electrode has a great potential for hydrazine sensor application due to its ease of fabrication, good reproducibility and high stability.  相似文献   
59.
Novel premises of ‘Green Nanotechnology’ have tremendous impacts towards industrial scale revolution. The furtive extracted from natural precursors have driven to the generation of biogenic resources for the fabrication of cutting-edge nanomaterials in simple and cost-effective process. This inspection is an intension of the coupling hypothesis of Nanotechnology via ‘Green-Chemistry’ avenue. So, as to diminish the negative effects of technological applications in the health of human beings and the environment, society is focused towards a greener future. Nanoscience assures a promising future by its improvement in green chemistry to develop the 'Greenary Nanoscience and Nanotechnology'. The improvement and execution of chemical assisted processes in order to reduce the usage of harmful substances, the ‘Green Chemistry’ approach is one and only remarkable authentication, which attributed to long range surface area and higher pore volume of gold-nanoparticles. As of now, the efficient biogenic mechanism dramatically reduces the utilization and hazardous reagents have been employed to low-price natural and waste products to yield value-added nanomaterials with extensive relevance, suggesting an economical and green solution to environmental issues. In depth investigation of this critical review illustrates, novel biogenic screening platform was also conducted against antimicrobial strains and degradation of gold-nanoparticles products well explored-from selection precursors evolved from natural extracts, as well as eventually disintegration into bio-degradable yet potentially recyclable byproducts.  相似文献   
60.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号