首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   10篇
  国内免费   30篇
化学   494篇
数学   1篇
物理学   38篇
  2023年   5篇
  2022年   7篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   12篇
  2016年   6篇
  2015年   13篇
  2014年   8篇
  2013年   16篇
  2012年   48篇
  2011年   23篇
  2010年   40篇
  2009年   35篇
  2008年   43篇
  2007年   44篇
  2006年   34篇
  2005年   30篇
  2004年   32篇
  2003年   18篇
  2002年   19篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   10篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
501.
Contrary to dialkylaminoethyl halides, 2-picolyl chloride reacts with alkaline arsenite to give nearly quantitative yields 2-picolylarsonic acid. This acid is decomposed by ascorbic acid in the presence of catalytic amounts of iodine to 2-picoline and arsenious acid, most likely by hydride transfer from the ascorbic acid. Thiophenol decomposes this arsonic acid very quickly to 2-picoline, diphenyl disulfide and triphenyl trithioarsenite. In this case a proton from the thiophenol is transferred to the incipient 2-picolyl carbanion.  相似文献   
502.
维生素C为酸性己糖衍生物,有L-型(抗坏血酸(AA))和D-型(脱氢抗坏血酸(DHA))两种异构体,DHA是AA的第一个稳定氧化产物,是AA的可逆氧化形式,因此,对AA的任何性质或度量的讨论都将涉及同一体系中DHA的性质。紫外光谱是电子跃迁难易程度和几率的直观体现,理论计算方法与分子模型的构建不合理,都将导致对维生素C的最大吸收峰产生误判,从而无法准确的表征维生素C的激发性质。因此,为准确探究维生素C的抗氧化机理,在液相环境中,基于密度泛函理论(DFT)和含时密度泛函(TD-DFT)理论,分别采用pbepbe/6-311++g(2d, 2p)方法和B3LYP/6-311++g(2d, 2p)方法,计算并分析了维生素C的抗坏血酸和脱氢抗坏血酸分子的结构、紫外光谱及电子激发特征。结果表明:pbepbe/6-311++g(2d, 2p)是计算AA紫外吸收光谱更精确的方法;DHA比AA的环状结构发生了显著的平面扭曲。紫外光谱分析可知,基态跃迁到S1,S2,S3,S4,S14和S18激发态为AA产生紫外光谱的主要原因,AA位于200.171 5 nm处的吸收峰包含n→π*,n→σ*电子跃迁,266.9248 nm处的吸收峰包含n→π*π→π*的跃迁。基态跃迁到S6,S9,S12,S13,S15,S16,S17,S19和S20激发态为DHA产生紫外光谱的主要原因,DHA的最强吸收峰位于181.024 8 nm处,具有n→σ*n→π*的跃迁特征,231.346 39 nm处微弱的吸收峰指认为n→π*跃迁,282.466 8 nm处的吸收峰主要对应n→π*的跃迁;通过空穴-电子分布及其衍生量的分析,可定性地对AA吸收峰起主要作用的7个激发态的特征及对DHA吸收峰起主要作用的9个激发态的特征进行详细的指认。其中对AA紫外光谱起主要贡献的S4,S13和S14激发态与对DHA紫外光谱起主要贡献的S6,S9,S17和S20激发态电荷转移较明显,空穴的质心中心和电子质心的中心分离较明显,可以指认为电荷转移激发,而其他激发态的电子与空穴分离程度很低,指认为局域激发。  相似文献   
503.
This work reports the analytical applications of a graphene paste electrode (GrPE) for the quantification of dopamine, ethanol and phenolic compounds. Dopamine was detected by differential pulse voltammetry‐adsorptive stripping with medium exchange at submicromolar levels even in the presence of high excess of ascorbic acid and serotonin. The electrocatalytic activity of graphene towards the oxidation of NADH and the reduction of quinones allowed the sensitive amperometric determination of ethanol and phenols using GrPE modified with alcohol dehydrogenase/NAD+ or polyphenol oxidase, respectively, with successful applications in real samples like alcoholic beverages and tea.  相似文献   
504.
This paper describes the development a novel ruthenium(II) complex‐ZnO/CNTs modified carbon paste electrode (Ru(II)/ZnO/CNTs/CPE) for the electrocatalytic determination of ascorbic acid (AA). The objective of this novel electrode modification was to seek new electrochemical performances for the detection of AA, nicotinamide adenine dinucleotide (NADH) and folic acid (FA). The peak potentials recorded were 170, 500 and 830 mV vs. Ag/AgCl/KClsat for AA, NADH and FA, respectively. The peak currents were linearly dependent on AA, NADH and FA concentrations using square wave voltammetry (SWV) method at the ranges of 0.008–251, 1.0–650, and 3.0–700 µmol L?1, with detection limits of 0.005, 0.5, and 1.0 µmol L?1, respectively.  相似文献   
505.
A simple sensing unit based on a disposable screen printed carbon electrode coated by an electrospun nylon‐6 nanofibrous membrane was developed for in situ selective determination of ascorbic acid (AA) in different types of fruits. The membrane, prepared by electrospinning, represents a selective barrier to possible interferents, such as phenolic compounds, allowing an improved selectivity towards AA. No sample preparation and/or dilution is necessary since the new device is applied directly “pricking” the fruit with the electrode. A good correlation was obtained between the amperometric in situ method and a reference chromatographic methodology (HPLC‐UV) when applied to various fruit samples.  相似文献   
506.
The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control.Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices.Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.  相似文献   
507.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   
508.
Ferrocene‐terminated self‐assembled monolayer (Fc‐SAM) on gold was used as an electron‐transfer mediator in the electrochemical assay of L ‐ascorbic acid 2‐phosphate (AAP). The assay is based on the enzymatic action of alkaline phosphatase (ALP), which triggers the release of vitamin C (L ‐ascorbic acid, AA) from AAP. The latter is easily oxidized on the Fc‐SAM under the diffusion limiting conditions that favors quantitative measurement of the AA concentration on a rotating disk electrode. We demonstrate the utility of the electrochemically active Fc‐SAM to probe the mechanism and to determine the kinetic parameters of an enzymatic reaction. The electrochemical technique was compared to a conventional spectrophotometric method of ALP activity detection using p‐nitrophenylphosphate (p‐NPP) as a substrate. We demonstrate that our new technique is also suitable for the analytical determination of ALP activity. The detection limits for both AAP and ALP were found to be 13 μM and 2 pM, respectively.  相似文献   
509.
Uric acid (UA) was determined in the presence of ascorbic acid (AA) by using a carbon paste electrode modified superficially by a β‐cyclodextrin film (CPE/β‐CD). The surface carbon paste electrode was prepared applying a 30 cycles potential program and using a 1 M HClO4+0.01 M β‐CD electrolytic solution. The UA and AA solutions were used to evaluate the electrode selectivity and sensitivity by cyclic voltammetric and amperometric methods. In these experiments the detection limit for UA was (4.6±0.01)×10?6 M and the RSD calculated from the amperometric curves was 10%. From the data obtained it was possible to quantify UA in the urine and saliva samples. Selective detection of UA was improved by formation of an inclusion complex between β‐CD and UA. The results show that the CPE/β‐CD is a good candidate due to its selectivity and sensitivity in the UA determination in complex samples like the biological fluids.  相似文献   
510.
The much‐enhanced electrochemical responses of potassium ferricyanide and methylene blue (MB) were firstly explored at the glassy carbon electrode modified with single‐walled carbon nanotubes (SWNT/GCE), indicating the distinct electrochemical activity of SWNTs towards electroactive molecules. A hydrophobic room temperature ionic liquid (RTIL), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), was used as electrode modification material, which presented wide electrochemical windows, proton permeation and selective extraction ability. In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of ‘sandwich–type’ electrode was established with TMs confined by RTIL between the SWNT/GCE and the RTIL membrane. The strategy was used for electrochemical detection of ascorbic acid (AA) and dopamine (DA), and detection limits of 400 and 80 fmol could be obtained, respectively. The selective detection of DA in the presence of high amount of AA could also be realized. This protocol presented many attractive advantages towards voltammetric detection of TMs, such as low sample demand, low cost, high sensitivity, and good stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号