全文获取类型
收费全文 | 2273篇 |
免费 | 224篇 |
国内免费 | 93篇 |
专业分类
化学 | 1245篇 |
晶体学 | 22篇 |
力学 | 118篇 |
综合类 | 3篇 |
数学 | 47篇 |
物理学 | 1155篇 |
出版年
2025年 | 2篇 |
2024年 | 15篇 |
2023年 | 20篇 |
2022年 | 42篇 |
2021年 | 37篇 |
2020年 | 72篇 |
2019年 | 70篇 |
2018年 | 45篇 |
2017年 | 49篇 |
2016年 | 75篇 |
2015年 | 86篇 |
2014年 | 90篇 |
2013年 | 223篇 |
2012年 | 111篇 |
2011年 | 120篇 |
2010年 | 90篇 |
2009年 | 126篇 |
2008年 | 140篇 |
2007年 | 160篇 |
2006年 | 106篇 |
2005年 | 110篇 |
2004年 | 93篇 |
2003年 | 80篇 |
2002年 | 61篇 |
2001年 | 55篇 |
2000年 | 68篇 |
1999年 | 56篇 |
1998年 | 68篇 |
1997年 | 51篇 |
1996年 | 41篇 |
1995年 | 44篇 |
1994年 | 36篇 |
1993年 | 20篇 |
1992年 | 27篇 |
1991年 | 20篇 |
1990年 | 3篇 |
1989年 | 6篇 |
1988年 | 12篇 |
1987年 | 3篇 |
1986年 | 8篇 |
1985年 | 9篇 |
1984年 | 5篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 3篇 |
1976年 | 1篇 |
1974年 | 2篇 |
1973年 | 4篇 |
排序方式: 共有2590条查询结果,搜索用时 15 毫秒
61.
《Journal of Coordination Chemistry》2012,65(3-4):267-284
Abstract Infrared spectra of the coordination compounds [MG2(py)2], M(II)=Co, Ni, Cu and Zn; G=glycolato, py=pyridine, have been fully assigned by means of py and py-d 5 and glycolato α—OH and α—OD (G-d) labelling as well as metal ion substitution in the 4000–70cm?1 region. The crystal structure of the Ni(II) compound is presented and the spectra of the compounds are discussed on the basis of their structure and their bonding to the glycolato and pyridine ligands. Vibrational frequencies obtained for the Ni(II) compound are compared to those obtained by calculations carried out using the Gaussian 94 program package. 相似文献
62.
Unique Vibrational Features as a Direct Probe of Specific Antigen–Antibody Recognition at the Surface of a Solid‐Supported Hybrid Lipid Bilayer
下载免费PDF全文

Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three‐photon mixing process, may provide a direct and unique fingerprint of bio‐recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second‐order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio‐active antigen platform, based on a solid‐supported hybrid lipid bilayer (ss‐HLB) of a 2,4‐dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti‐DNP complementary antibody. 相似文献
63.
The formation of negative hydrogen ions in a conventional hollow cathode discharge has been investigated. A mixture of Ne and H2 proved to be more advantageous compared to pure hydrogen. The study has been performed by solving the electron Boltzmann equation, coupled with a system of balance equations for neon and hydrogen neutral and charged particles. The vibrational distribution function of hydrogen has been calculated. Our calculations show unusually high population of vibrationally excited hydrogen molecules in a Ne–H2 mixture, which explains the high density of negative hydrogen ions under optimal conditions (total gas pressure of few Torr, hydrogen number mole fraction of 1–10% and discharge current of 10–100 mA). Line intensities originating from highly excited neon states vs. hydrogen pressure have been calculated and a comparison with existing experimental results has been made. 相似文献
64.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands. 相似文献
65.
Zirconiumphthalocyanines: Synthesis and Properties of Chloride Ligated Phthalocyanines of Ter- and Quadrivalent Zirconium; Crystal Structure of cis-Di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2–)zirconate(IV)-di(dichloromethane) cis-Di(chloro)phthalocyaninato(2–)zirconium(IV) is obtained by the reaction of ZrCl4 with phthalodinitrile in 1-chloronaphthaline at 230°C. It reacts with molten di(triphenylphosphine)iminiumchloride ((PNP)Cl) yielding cis-di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2-)zirconate(IV), cis-(PNP)[ZrCl3Pc2?]. This crystallizes with two molecules of dichloromethane in the monoclinic space group P21/n with the lattice constants a = 15.219(4) Å, b = 20.262(10) Å, c = 20.719(4) Å, b? = 93.46(2)°, Z = 4. The seven coordinated Zr atom is situated in a “square base-trigonal cap” polyhedron. The plane of the three chlorine atoms runs parallel to the plane of the four isoindole nitrogen atoms Niso. The Zr–Cl distances range from 2.49 to 2.55 Å, the Zr? Niso distances from 2.26 to 2.29 Å. Due to ion packing effects the Pc2? ligand shows an asymmetrical convex distortion. The PNP cation adopts the bent conformation. The P? N? P angle is 139°, the P? N distance 1.58 Å. As confirmed by the cyclovoltammograms cis-(PNP)[ZrCl3Pc2?] is oxidized (anodically or chemically by Cl2) to yield cis-tri(chloro)phthalocyaninato(1–)zirconium(IV) and reduced (cathodically or chemically by [BH4]?) yielding chlorophthalocyaninato(2–)zirconium(III) and cis-di(triphenylphosphine)iminium-di(chloro)phthalocyaninato(2–)zirconate(III). The optical spectra show the typical π–π*-transitions of the Pc2? resp. Pc? ligand not much affected by the different states of oxidation and coordination of zirconium. The same is true for the vibrational spectra of the Pc2? resp. Pc? ligand. In the f.i.r. spectra between 350 and 150 cm?1 the asym. and sym. Zr? Cl stretching and Cl? Zr? Cl deformation vibration as well as the asym. Zr? N stretching vibration of the [ZrClxN4] skeleton (x = 1–3) is assigned. 相似文献
66.
Osmium(II) Phthalocyanines: Preparation and Properties of Di(acido)phthalocyaninatoosmates(II) “H[Os(X)2Pc2?]” (X = Br, Cl) reacts in basic medium or in the melt with (nBu4N)X forming less stable, diamagnetic, darkgreen (nBu4N)2[Os(X)2Pc2?]. Similar dicyano and diimidazolido(Im) complexes are formed by the reaction of “H[Os(Cl)2Pc2?]” with excess ligand in the presence of [BH4]?. The cyclic voltammograms show up to three quasireversible redoxprocesses: E1/2(I) = 0.13 V (X = CN), ?0.03 V (Im), ?0.13 V (Br) resp. ?0.18 V (Cl) is metal directed (OsII/III), E1/2(II) = 0.69 V (Cl), 0.71 V (Br), 0.83 V (CN), 1.02 V (Im) is ligand directed (Pc2?/?) and E1/2(III) = 1.17 V (Cl) resp. 1.23 V (Br) is again metal directed (OsIII/IV). Between the typical “B” (~16.2 kK) and “Q” (~29.4 kK), “N regions” (~34.1 kK) up to seven strong “extra bands” of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. Within the row CN > Im > Br > Cl, most of the bands are shifted slightly, the “extra bands” considerably more to lower energy in correlation with E1/2(I). The vibrational spectra are typical for the Pc2? ligand with D4h symmetry. M.i.r. bands at 514, 909, 1 173 and 1 331 cm?1 are specific for hexa-coordinated low spin OsII phthalocyanines. In the resonance Raman (r.r.) spectra polarized, depolarized or anomalously polarized deformation and stretching vibrations of the Pc2? ligand will be selectively enhanced, if the excitation frequency coincides with “extra bands”. With excitation at ~19.5 kK the intensity of the symmetrical Os? X stretching vibration at 295 cm?1 (X = Cl), 252 cm?1 (X = Im) and 181 cm?1 (X = Br) is r.r. enhanced, too. The asymmetrical Os? X stretching vibration is observed in the f.i.r. spectrum at 345 cm?1 (X = CN), 274 cm?1 (X = Cl), 261 cm?1 (X = Im) and 200 cm?1 (X = Br). 相似文献
67.
InIII-Phthalocyanines: Synthesis, Properties, and Crystal Structure of Tetra(n-butyl)ammonium-cis-di(nitrito-O,O')phthalocyaninato(2–)indate(III) [In(Cl)Pc2?] reacts with (nBu4N)NO2 in acetone yielding green-blue (nBu4N)cis[In(NO2)2Pc2?], which crystallizes in the monoclinic space group P21/n (No. 14). Both nitrite anions are coordinated as chelating nitrito-O,O'(NO2) ligands to InIII in cis-geometry. Consequently InIII is octa-coordinated within a distorted “quadratic” antiprism and directed towards the Pc2?-ligand. One of the NO2 ligands has equivalent N? O bonds similar to free nitrite, while the other has asymmetric N? O bonds. Both (In,O,N,O) rings are approximately planar with a dihedral angle of 80°. The Pc2? ligand is distorted in an asymmetrically convex manner. Partially overlapping pairs of Pc2? ligands related by an inversion center form double layers, which are separated by layers containing the (nBu4N)+ cations. The cyclic voltammogram shows three electrode processes, which are assigned to the redox pairs: Pc3?/Pc2? (?0.94 V) < InI/InIII (-0.78 V) < Pc2?/Pc? (0.64 V). The UV-VIS-NIR spectra and vibrational spectra are discussed. 相似文献
68.
On the Reactions of CH3OCl, CF3OCl, CF3OF, and CF3OH with the Superacid System HF/MF5 (M = As, Sb). Preparation and Characterization of CH3OCl(H)+MF6? and CF3OCl(H)+MF6? The preparation of the chlorine oxoniumsalts CH3OCl(H)+MF6? and CF3OCl(H)+MF6? by protonation of CH3OCl and CF3OCl in the superacid solution of HF/MF5 (M = As, Sb) is described. However CF3OF and CF3OH have not been protonated under the same conditions. In the case of CF3OH the formation of F2CO · MF5 is observed. The novel compounds are characterized by nmr- and vibrational spectroscopy. 相似文献
69.
Summary An extension of the multiconfigurational SCF approach for the resolution of the vibrational problem is presented; it follows the philosophy of the CASSCF method developed in Quantum Chemistry. The new method allows a more complete treatment of anharmonic mode couplings, converges much faster and gives a clearer physical insight of vibrational interactions. This is exemplified by the calculation of infrared transition moments in the H2O and D2O isotopomers of the water molecule. It is shown how this property varies with the quality of the wave function when vibrational resonances occur. A detailed analysis by means of this new VCASSCF method demonstrates the crucial importance of excited bending oscillators in the intensity of some pure stretching transitions.Boursier F.R.I.A. 相似文献
70.
We have performed large-scaleab initio calculations using second order Møller-Plesset perturbation theory (MP2) on the three van der Waals dimers formed from acetylene and carbon dioxide. Intermolecular geometrical parameters are reliably computed at this level of theory. Calculations of vibrational frequencies of the van der Waals modes, currently unobtainable by experimental means, give important information about the intermolecular potential and predict significant large-amplitude motion. Zero point energy contributions are shown to be vital in assessing the relative stability of conformations which are close in energy. Our studies suggest that the barrier to interconversion tunnelling in (CO2)2 is significantly smaller than previously inferred and is approximately the same as in (C2H2)2. The reason for the rigidity of (CO2)2 is the difference in monomer centre-of-mass separation between ground state and transition state. We also show that, in addition to the previously observedC
2v
form, the collinear form of C2H2-CO2 is a local minimum on its potential energy surface. 相似文献