首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4587篇
  免费   334篇
  国内免费   377篇
化学   5097篇
晶体学   8篇
力学   18篇
综合类   8篇
数学   7篇
物理学   160篇
  2024年   1篇
  2023年   17篇
  2022年   23篇
  2021年   51篇
  2020年   87篇
  2019年   63篇
  2018年   72篇
  2017年   161篇
  2016年   198篇
  2015年   181篇
  2014年   175篇
  2013年   447篇
  2012年   206篇
  2011年   277篇
  2010年   284篇
  2009年   301篇
  2008年   313篇
  2007年   345篇
  2006年   298篇
  2005年   283篇
  2004年   285篇
  2003年   215篇
  2002年   176篇
  2001年   110篇
  2000年   101篇
  1999年   94篇
  1998年   83篇
  1997年   65篇
  1996年   56篇
  1995年   63篇
  1994年   59篇
  1993年   73篇
  1992年   61篇
  1991年   21篇
  1990年   14篇
  1989年   8篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
排序方式: 共有5298条查询结果,搜索用时 15 毫秒
991.
通过葡萄糖、丙烯酸羟乙酯和丁二胺反应,制备了含不饱和双键的糖基功能单体。 采用傅里叶红外光谱和核磁共振氢谱对合成的产物进行结构表征确定。 采用紫外光引发接枝聚合技术,将制备的不饱和糖单体接枝聚合到聚氨酯膜的表面,以衰减全反射模式下傅里叶红外光谱对表面接枝反应进行了确认。 通过静态水接触角实验和血小板黏附实验,分别对改性聚氨酯膜表面的亲水性和血液相容性进行了研究,结果表明,改性聚氨酯膜表面的接触角从86°降低到45°,血小板的粘附量由14.36×103 cells/mm2减少到2.57×103 cells/mm2,亲水性明显增强,血液相容性显著改善。  相似文献   
992.
嵌段聚合物由于不同嵌段热力学不相容而形成微观相分离,进而发生自组装排列成规则有序的微观结构,其中网状结构是自组装微观结构中的复杂结构,具有令人瞩目的特性,在纳米科技领域应用价值极高,备受各国研究者的青睐。本文介绍了嵌段聚合物自组装原理和网状结构的特点,重点综述了两嵌段聚合物自组装结构中常见的三种网状结构的发展、制备方法以及在纳米科技中的应用,并指出当今网状结构的研究热点,预测该领域的发展趋势。  相似文献   
993.
The cationic polymerization of ethyl, n-butyl and iso-butyl vinyl ether, EVE, BVE and iBVE, respectively, was efficiently conducted using bis(η5-cyclopentadienyl)dimethyl hafnium, Cp2HfMe2, or bis(η5-cyclopentadienyl)dimethyl zirconium, Cp2ZrMe2 in combination with either tris(pentafluorophenyl)borate, B(C6F5)3, or tetrakis(pentafluorophenyl)borate dimethylanilinum salt, [B(C6F5)4]?[Me2NHPh]+, as initiation systems. The evolution of polymer yield, molecular weight and molecular weight distribution with time was examined. In addition, the influence of the initiating system, the monomer and the reaction conditions on the control of the polymerization was studied. Furthermore, statistical copolymers of EVE with BVE were prepared employing Cp2HfMe2 and [B(C6F5)4]?[Me2NHPh]+ as the initiation system. The reactivity ratios were estimated using both linear graphical and non-linear methods. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The glass transition temperatures, Tg, of the copolymers were measured by Differential Scanning Calorimetry, DSC, and the results were compared with predictions based on several theoretical models. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies.  相似文献   
994.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   
995.
Electrophilic trisubstituted ethylenes, ring-disubstituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C4H9 (where R is 2-fluoro-5-methoxy, 2-fluoro-6-methoxy, 3-fluoro-4-methoxy, 4-fluoro-3-methoxy, 5-fluoro-2-methoxy, 3-fluoro-2-methyl, 3-fluoro-4-methyl, 4-fluoro-2-methyl, 4-fluoro-3-methyl, 5-fluoro-2-methyl were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-disubstituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copoly-merized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (1.2–3.5% wt.), which then decomposed in the 500–800°C range.  相似文献   
996.
Novel trisubstituted ethylenes, halogen ring-trisubstituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH ?C(CN)CO2C4H9 (where R is 3-bromo-4,5-dimethoxy, 5-bromo-2,4-dimethoxy, 2-bromo-3-hydroxy-4-methoxy, 3-chloro-2,6-difluoro, 4-chloro-2,6-difluoro, 2,3,5-trichloro, 2,3,6-trichloro, 2,4,5-trifluoro) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (3–5% wt.), which then decomposed in the 500–800°C range.  相似文献   
997.
Novel trisubstituted ethylenes, ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2-C6H5CH2O, 3-C6H5CH2O, 4-C6H5CH2O, 4-CH3COO, 3-CH3CO, 4-CH3CONH, 2-CN, 3-CN, 4-CN, 4-(CH3)2N, 4-(C2H5)2N) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (2.7–8.6% wt.), which then decomposed in the 500–800°C range.  相似文献   
998.
This paper reviews recent studies done in academia or industrial laboratories on polymer nanocomposites based on various type of polyolefins like homopolymers, copolymers and polyblends reinforced with various mineral (montmorillonite, bentonite, closite, laponite, layered double hydroxide, etc.) carbon based (graphite, carbon nanotubes, carbon nanofibers, exfoliated graphite, graphene, carbon black, etc.) nanofillers. The review covers their preparation, their mechanical, thermal, flammability, gas barrier capability, electrical, dielectrical, antibacterial characteristics and their potential applications like low weight structural materials, part of optical devices, thermal interface materials, electric and electromagnetic components, absorption, antibacterial materials, etc.  相似文献   
999.
Novel trisubstituted ethylenes, alkyl and alkoxy ring-disubstituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2,3-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (0.6–5.0% wt.), which then decomposed in the 500–800°C range.  相似文献   
1000.
A conjugated poly(phenyl‐co‐dibenzocyclooctyne) Schiff‐base polymer, prepared through polycondensation of dibenzocyclooctyne bisamine (DIBO‐(NH2)2) with bis(hexadecyloxy)phenyldialdehyde, is reported. The resulting polymer, which has a high molecular weight (Mn>30 kDa, Mw>60 kDa), undergoes efficient strain‐promoted alkyne–azide cycloaddition reactions with a series of azides. This enables quantitative modification of each repeat unit within the polymer backbone and the rapid synthesis of a conjugated polymer library with widely different substituents but a consistent degree of polymerization (DP). Kinetic studies show a second‐order reaction rate constant that is consistent with monomeric dibenzocyclooctynes. Grafting with azide‐terminated polystyrene and polyethylene glycol monomethyl ether chains of varying molecular weight resulted in the efficient syntheses of a series of graft copolymers with a conjugated backbone and maximal graft density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号