首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   1篇
化学   131篇
物理学   1篇
  2020年   5篇
  2019年   12篇
  2018年   4篇
  2017年   14篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   3篇
  2012年   12篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  2001年   5篇
  2000年   10篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1980年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有132条查询结果,搜索用时 46 毫秒
41.
42.
43.
44.
45.
    
Zusammenfassung Der Einsatz verschiedener ternärer Lösungsmittelmischungen als mobile Phase in der Reversed-Phase-Hochdruckflüssigkeits-Chromatographie wird beschrieben. Am Beispiel der Trennung von ausgewählten PTH-Aminosäuren (Phe-Lys, Phe-Ile, Val-Met) konnte gezeigt werden, daß durch ternäre Lösungsmittelmischungen selektive Trennungen erreicht werden, die mit binären Systemen nicht möglich waren. Am besten bewährt hat sich Acetatpuffer-Acetonitril-Dimethylsulfoxid (503020).
Ternary solvent systems for the separation of PTH amino acids by reversed-phase high pressure liquid chromatography
Summary The use of ternary solvent systems as mobile phases in the HPLC separation of selected PTH-amino acids (phe-lys, phe-ile, val-met) is described and it is shown that resolutions are obtained which cannot be achieved with binary phases. The system acetate buffer — acetonitrile — dimethylsulphoxide (503020) has proved to be most satisfactory.
  相似文献   
46.
Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil‐like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions.  相似文献   
47.
The solvent‐free mechanical milling process for two distinct metal–organic framework (MOF) crystals induced the formation of a solid solution, which is not feasible by conventional solution‐based syntheses. X‐ray and STEM‐EDX studies revealed that performing mechanical milling under an Ar atmosphere promotes the high diffusivity of each metal ion in an amorphous solid matrix; the amorphous state turns into the porous crystalline structure by vapor exposure treatment to form a new phase of a MOF solid solution.  相似文献   
48.
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.  相似文献   
49.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g?1 h?1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.  相似文献   
50.
The crystal phase plays an important role in controlling the properties of a nanomaterial; however, it is a great challenge to obtain a nanomaterial with high purity of the metastable phase. For instance, the large‐scale synthesis of the metallic phase MoS2 (1T‐MoS2) is important for enhancing electrocatalytic reaction, but it can only be obtained under harsh conditions. Herein, a spatially confined template method is proposed to synthesize high phase‐purity MoS2 with a 1T content of 83 %. Moreover, both the confined space and the structure of template will affect the purity of 1T‐MoS2; in this case, this approach was extended to other similar spatially confined templates to obtain the high‐purity material. The obtained ultrathin nanosheets exhibit good electrocatalytic activity and excellent stability in the hydrogen evolution reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号