排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
Zhengmiao Zhou Dr. Yufang Zhang Honghan Ji Yu Jin Sisi Chen Prof. Pengfei Duan Prof. Ye Liu 《Angewandte Chemie (International ed. in English)》2023,62(28):e202301085
Although numerous chiral small molecules have been discovered and synthesized, the investigation on their enantioselective immunological effects remains limited. In this study, we designed and synthesized a pair of small molecule enantiomers (R/S-ResP) by covalently bonding two immunostimulators (resiquimod/Res) onto a planar chiral framework (paracyclophane/P). Notably, we found that S-ResP exhibits a 4.05-fold higher affinity for toll-like receptor 7 (TLR7) than R-ResP, thereby more effectively enhancing the functions of dendritic cells and macrophages in cytokine secretion and antigen internalization. Furthermore, we observed that S-ResP significantly enhances RBD antigen-induced cross-neutralization against various SARS-CoV-2 strains compared to R-ResP. These findings demonstrate the enantioselective effects of small molecules on regulating vaccine-induced immune responses and emphasize the significance of chirality in designing small molecular adjuvants. 相似文献
12.
Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics simulation was performed, corroborating stable vaccine-TLR2 binding. In sum, the results suggest that our designed epitope vaccine could incite robust long-term protective immunity against V. cholera. 相似文献
13.