首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4004篇
  免费   320篇
  国内免费   168篇
化学   4306篇
晶体学   7篇
力学   12篇
综合类   4篇
数学   23篇
物理学   140篇
  2024年   1篇
  2023年   14篇
  2022年   21篇
  2021年   42篇
  2020年   75篇
  2019年   55篇
  2018年   68篇
  2017年   144篇
  2016年   187篇
  2015年   173篇
  2014年   164篇
  2013年   367篇
  2012年   172篇
  2011年   240篇
  2010年   252篇
  2009年   260篇
  2008年   262篇
  2007年   288篇
  2006年   263篇
  2005年   245篇
  2004年   242篇
  2003年   177篇
  2002年   153篇
  2001年   83篇
  2000年   86篇
  1999年   67篇
  1998年   57篇
  1997年   49篇
  1996年   47篇
  1995年   45篇
  1994年   46篇
  1993年   48篇
  1992年   45篇
  1991年   13篇
  1990年   9篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有4492条查询结果,搜索用时 984 毫秒
21.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
22.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   
23.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
24.
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004  相似文献   
25.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   
26.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   
27.
A fluorinated copolymer/metal oxide hybrid is fabricated by refluxing a high hydroxyl content fluorinated copolymer with tetraethoxysilane. The resulting organic-inorganic hybrids are transparent throughout the entire compositional range if processed with HCl as a catalyst. They exhibit a continuous variation in hardness, hydrophobicity, and abrasion resistance, intermediary between the properties of the pure polymer and that of a silica gel. The catalyst has a strong influence over the microstructure of the hybrid. 29Si MAS-NMR indicates the presence of highly condensed silica clusters within the structure of the hybrid. If a Nd(III) alkoxide is used instead of TEOS, a Nd 3+-doped fluoropolymer is obtained. These results indicate that when a fluorinated copolymer contains groups amenable to hydrolysis and condensation, cross-linking with a metal alkoxide is possible, leading to an interesting families of hybrids.  相似文献   
28.
The influence of irradiation and grafting on the crystallinity of three base polymers has been investigated with differential scanning calorimetry. Grafting has the largest effect on the base polymer crystallinity and results in a reduction of the crystallinity. The thermal degradation of the base polymers and grafted films has been investigated with thermogravimetric analysis. The extent of the fluorination of the base polymer, the irradiation method, and the graft level all influence the thermal degradation and its activation energy. It is proposed that the variation of the chain lengths of the grafted polystyrene chains is actually a primary underlying factor responsible for the influence of these various parameters on the degradation process. The first results of a comparative thermal analysis of some fuel‐cell membranes are also presented, and the promise and shortcomings of this method are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2612–2624, 2004  相似文献   
29.
The adsorption of asymmetrical triblock copolymers from a non-selective solvent on solid surface has been studied by using Scheutjens-Fleer mean-field theory and Monte Carlo simulation method on lattice model. The main aim of this paper is to provide detailed computer simulation data, taking A8-kB20Ak as a key example, to study the influence of the structure of copolymer on adsorption behavior and make a comparison between MC and SF results. The simulated results show that the size distribution of various configurations and density-profile are dependent on molecular structure and adsorption energy. The molecular structure will lead to diversity of adsorption behavior. This discrepancy between different structures would be enlarged for the surface coverage and adsorption amount with increasing of the adsorption energy. The surface coverage and the adsorption amount as well as the bound fraction will become larger as symmetry of the molecular structure becomes gradually worse. The adsorption layer becomes thicker with increasing of symmetry of the molecule when adsorption energy is smaller but it becomes thinner when adsorption energy is higher. It is shown that SF theory can reproduce the adsorption behavior of asymmetrical triblock copolymers. However, systematic discrepancy between the theory and simulation still exists.The approximations inherited in the mean-filed theory such as random mixing and the allowance of direct back folding may be responsible for those deviations.  相似文献   
30.
A kinetic investigation on the monoesterification reaction of the maleic anhydride residue (MA) in styrene-maleic anhydride copolymers with aliphatic alcohols was carried out in ethyl benzene solution. By comparison to classic catalysts such as tributylamine (TBA) and pyridine, 4-dimethylaminopyridine (4DMAP) is by far the most effective catalyst for this reaction. While both general base and nucleophilic mechanisms contribute to the reaction catalyzed by TBA or pyridine, a nucleophilic mechanism prevails with 4DMAP. This reaction is reversible, and its chemical equilibrium constant decreases significantly with increasing temperature. Both kinetic and thermodynamic results showed that in the presence of 4DMAP, the forward and reverse reactions are second and first order, respectively. The existence of side reactions, reactivity of two styrene-maleic anhydride copolymers of different MA contents as well as two aliphatic alcohols of different lengths are also addressed. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号