首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30418篇
  免费   1778篇
  国内免费   5030篇
化学   28741篇
晶体学   585篇
力学   359篇
综合类   193篇
数学   2553篇
物理学   4795篇
  2024年   44篇
  2023年   276篇
  2022年   605篇
  2021年   592篇
  2020年   733篇
  2019年   1659篇
  2018年   784篇
  2017年   1660篇
  2016年   1081篇
  2015年   951篇
  2014年   1268篇
  2013年   2564篇
  2012年   1920篇
  2011年   1970篇
  2010年   1402篇
  2009年   1727篇
  2008年   1908篇
  2007年   1976篇
  2006年   1813篇
  2005年   1634篇
  2004年   1655篇
  2003年   1318篇
  2002年   1105篇
  2001年   919篇
  2000年   902篇
  1999年   695篇
  1998年   622篇
  1997年   553篇
  1996年   466篇
  1995年   463篇
  1994年   323篇
  1993年   292篇
  1992年   296篇
  1991年   208篇
  1990年   136篇
  1989年   114篇
  1988年   90篇
  1987年   56篇
  1986年   50篇
  1985年   58篇
  1984年   43篇
  1983年   24篇
  1982年   49篇
  1981年   43篇
  1980年   31篇
  1979年   48篇
  1978年   23篇
  1977年   20篇
  1976年   17篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
狄璐  赵胜男  李新刚 《分子催化》2022,36(5):413-424
采用溶剂热合成法,借助十六烷基三甲基溴化铵(CTAB)和十八烷基三甲基溴化铵 (STAB)的修饰合成了富含硫缺陷的ZnIn2S4-CTAB和ZnIn2S4-STAB光催化剂. 通过透射电镜、X射线衍射、紫外可见漫反射光谱、电子顺磁共振和光电化学性能测试对所有样品进行了表征,并通过光催化甲苯氧化反应测试样品的催化活性. 活性结果表明ZnIn2S4-CTAB和ZnIn2S4-STAB上甲苯转化速率分别达到795 μmol gcat-1 h-1和1053 μmol gcat-1 h-1,是未修饰ZnIn2S4-Blank催化剂的4倍和5倍,同时目标产物苯甲醛选择性均大于92%. 机理研究发现,表面活性剂修饰后的ZnIn2S4-CTAB和ZnIn2S4-STAB较ZnIn2S4-Blank,具有更高浓度的硫缺陷. 硫缺陷通过捕获电子促进了光生载流子的分离与利用,显著提高了ZnIn2S4-CTAB和ZnIn2S4-STAB的光催化甲苯选择性氧化制苯甲醛活性.  相似文献   
992.
郑治文  王来来 《分子催化》2022,36(6):513-521
氢氨甲基化反应(HAM)是由简单烯烃、胺和合成气一锅法合成有价值胺的方法,具有较高的原子经济效率.然而,4-氨基苯酚作为一种特殊的反应底物,因其同时具有羟基和胺基官能团,在羰基化反应过程中能够选择性地在不同位点发生反应获得不同的产物.因此,我们系统研究了4-氨基苯酚与烯烃的HAM,通过筛选反应参数,确定了最优反应条件,并通过调控添加剂种类,选择性地在4-氨基苯酚的不同活性位点发生反应.结果表明,以甲醇为溶剂,三(3-甲氧基苯基)膦为配体,RhCl(PPh_(3))_(3)为催化剂前驱体,合成气压力4 MPa(H_(2)∶CO=3∶1),反应温度100℃,反应时间20 h时,该催化体系具有最高的反应活性.当以CH3COOH作为添加剂时,选择性的4-氨基苯酚的胺基官能团发生氢氨甲基化反应得到产物4-[(2-苯丙基)氨基]苯酚,收率为82%;当以DBU作为添加剂时,得到苯乙酮产物,收率为92%.最后,提出了该反应可能的机理,为4-氨基苯酚的选择性反应提供理论依据.  相似文献   
993.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   
994.
4-Hydroxy isoleucine is one of the potent hypoglycemic active constituents of fenugreek seeds. A method capable of reducing biological interferences is required for bioavailability studies. An isocratic separation of 4-hydroxy isoleucine from endogenous interferences was achieved in ZIC-cHILIC column using 0.1% formic acid in water and acetonitrile (20:80, % v/v) pumped at 0.5 ml/min. Quantification was performed in multiple reaction monitoring mode using the transitions of m/z 148.1→102.1 and m/z 276.1→142.2 for 4-hydroxy isoleucine and homatropine (as internal standard), respectively. After full method validation, 4-hydroxy isoleucine levels in human plasma and commercial fenugreek formulations were determined. This method showed good linearity in the range of 50–2000 ng/mL. Intra- and interday accuracies were in the range of 90.64–109.0% and precision was <4.82% CV. The mean (SD) plasma concentration of 4-hydroxy isoleucine in healthy individuals at 2 h after oral administration of fenugreek tablet was found to be 1590 (260) ng/mL. Half of marketed formulations were found to contain <0.05% of 4-hydroxy isoleucine content. We developed a rapid hydrophilic interaction liquid chromatography–tandem mass spectrometry method for analysis of 4-hydroxy isoleucine in human plasma. This method can be applied directly to conduct the clinical pharmacokinetics studies of 4-hydroxy isoleucine in human population.  相似文献   
995.
As the strongest triple bond in nature, the N≡N triple bond activation has always been a challenging project in chemistry. On the other hand, since the award of the Nobel Prize in Chemistry in 1950, the Diels-Alder reaction has served as a powerful and widely applied tool in the synthesis of natural products and new materials. However, the application of the Diels-Alder reaction to dinitrogen activation remains less developed. Here we first demonstrate that a transition-metal-involved [4+2] Diels-Alder cycloaddition reaction could be used to activate dinitrogen without an additional reductant by density functional theory calculations. Further study reveals that such a dinitrogen activation by 1-metalla-1,3-dienes screened out from a series of transition metal complexes (38 species) according to the effects of metal center, ligand, and substituents can become favorable both thermodynamically (with an exergonicity of 28.2 kcal mol−1) and kinetically (with an activation energy as low as 13.8 kcal mol−1). Our findings highlight an important application of the Diels-Alder reaction in dinitrogen activation, inviting experimental chemists’ verification.  相似文献   
996.
1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.  相似文献   
997.
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N’-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.  相似文献   
998.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   
999.
Owing to the unique structural, electronic, and physico-chemical properties, molybdenum clusters are expected to play an important role in future nanotechnologies. However, their ground states are still under debate. In this study, the crystal structure analysis by particle swarm optimization (CALYPSO) approach is used for the global minimum search, which is followed by first-principles calculations, to detect an obvious dimerization tendency in Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 2\begin{document}$ - $\end{document}18) clusters when the 4s and 4p semicore states are not regarded as the valence states. Further, the clusters with even number of atoms are usually magic clusters with high stability. However, after including the 4s and 4p electrons as valence electrons, the dimerization tendency exhibits a drastic reduction because the average hybridization indices \begin{document}$ H_{ \rm{sp}} $\end{document}, \begin{document}$ H_{ \rm{sd}} $\end{document}, and \begin{document}$ H_{ \rm{pd}} $\end{document} are reduced significantly. Overall, this work reports new ground states of Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 11, 14, 15) clusters and proves that semicore states are essential for Mo\begin{document}$ _n $\end{document}  相似文献   
1000.
Herein we have reviewed our recent developments for the identification of new tacrine analogues for Alzheimer's disease (AD) therapy. Tacrine, the first cholinesterase inhibitor approved for AD treatment, did not stop the progression of AD, producing only some cognitive improvements, but exhibited secondary effects mainly due to its hepatotoxicity. Thus, the drug was withdrawn from the clinics administration. Since then, many publications have described non‐hepatotoxic tacrines, and in addition, important efforts have been made to design multitarget tacrines by combining their cholinesterase inhibition profile with the modulation of other biological targets involved in AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号