首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87315篇
  免费   11520篇
  国内免费   6383篇
化学   86951篇
晶体学   1364篇
力学   1677篇
综合类   155篇
数学   6408篇
物理学   8663篇
  2024年   39篇
  2023年   256篇
  2022年   623篇
  2021年   801篇
  2020年   1225篇
  2019年   3906篇
  2018年   2949篇
  2017年   4206篇
  2016年   3924篇
  2015年   5959篇
  2014年   5985篇
  2013年   9020篇
  2012年   6935篇
  2011年   6754篇
  2010年   5378篇
  2009年   5470篇
  2008年   5887篇
  2007年   5360篇
  2006年   4977篇
  2005年   4644篇
  2004年   4080篇
  2003年   3568篇
  2002年   3950篇
  2001年   2235篇
  2000年   2100篇
  1999年   1155篇
  1998年   597篇
  1997年   514篇
  1996年   423篇
  1995年   437篇
  1994年   310篇
  1993年   283篇
  1992年   283篇
  1991年   201篇
  1990年   124篇
  1989年   110篇
  1988年   86篇
  1987年   50篇
  1986年   46篇
  1985年   54篇
  1984年   38篇
  1983年   25篇
  1982年   49篇
  1981年   45篇
  1980年   24篇
  1979年   46篇
  1978年   20篇
  1977年   18篇
  1976年   15篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   
52.
53.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
54.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   
55.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
56.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
57.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
58.
The whole controlled synthesis of novel amphiphilic polylactide (PLA)‐grafted dextran copolymers was achieved. The control of the architecture of such biodegradable and potentially biocompatible copolymers has required a three‐step synthesis based on the “grafting from” concept. The first step consisted of the partial silylation of the dextran hydroxyl groups. This protection step was followed by the ring‐opening polymerization of D ,L ‐lactide initiated from the remaining OH functions of the partially silylated polysaccharide. The third step involved the silylether group deprotection under very mild conditions. Based on previous studies, in which the control of the first step was achieved, this study is focused on the last two steps. Experimental conditions were investigated to ensure a controlled polymerization of D ,L ‐lactide, in terms of grafting efficiency, graft length, and transesterification limitation. After polymerization, the final step was studied in order to avoid degradation of both polysaccharide backbone and polyester grafts. The chemical stability of dextran backbone was checked throughout each step of the synthesis. PLA‐grafted dextrans and PLA‐grafted (silylated dextrans) were proved to adopt a core‐shell conformation in various solvents. Furthermore, preliminary experiments on the potential use of these amphiphilic grafted copolymers as liquid/liquid interface stabilizers were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2577–2588, 2004  相似文献   
59.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   
60.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号