首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50888篇
  免费   4925篇
  国内免费   10459篇
化学   46062篇
晶体学   1880篇
力学   634篇
综合类   419篇
数学   3312篇
物理学   13965篇
  2024年   162篇
  2023年   950篇
  2022年   1789篇
  2021年   1781篇
  2020年   1829篇
  2019年   1645篇
  2018年   1350篇
  2017年   1729篇
  2016年   1825篇
  2015年   1579篇
  2014年   2100篇
  2013年   4671篇
  2012年   3181篇
  2011年   3409篇
  2010年   2956篇
  2009年   3719篇
  2008年   3576篇
  2007年   3558篇
  2006年   3335篇
  2005年   2853篇
  2004年   2719篇
  2003年   2316篇
  2002年   1927篇
  2001年   1580篇
  2000年   1460篇
  1999年   1178篇
  1998年   1001篇
  1997年   853篇
  1996年   741篇
  1995年   757篇
  1994年   673篇
  1993年   533篇
  1992年   505篇
  1991年   387篇
  1990年   263篇
  1989年   227篇
  1988年   194篇
  1987年   130篇
  1986年   99篇
  1985年   116篇
  1984年   91篇
  1983年   36篇
  1982年   66篇
  1981年   93篇
  1980年   65篇
  1979年   67篇
  1978年   44篇
  1977年   50篇
  1976年   30篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
31.
The effects of preparation method, composition, and thermal condition on formation of β‐iPP in isotactic polypropylene/ethylene–propylene rubber (iPP/EPR) blends were studied using modulated differential scanning calorimeter (MDSC), wide angle X‐ray diffraction (WAXD), and phase contrast microscopy (PCM). It was found that the α‐iPP and β‐iPP can simultaneity form in the melt‐blended samples, whereas only α‐iPP exists in the solution‐blended samples. The results show that the formation of β‐iPP in the melt‐blended samples is related to the crystallization temperature and the β‐iPP generally diminishes and finally vanishes when the crystallization temperature moves far from 125 °C. The phenomena that the lower critical temperature of β‐iPP in iPP/EPR obviously increases to 114 °C and the upper critical temperature decreases to 134 °C indicate the narrowing of temperature interval, facilitating the formation of β‐iPP in iPP/EPR. Furthermore, it was found that the amount of β‐iPP in melt‐blended iPP/EPR samples is dependent on the composition and the maximum amount of β‐iPP formed when the composition of iPP/EPR blends is 85:15 in weight. The results through examining the effect of annealing for iPP/EPR samples at melt state indicate that this annealing may eliminate the susceptibility to β‐crystallization of iPP. However, only α‐iPP can be observed in solution‐blended samples subjected to annealing for different time. The PCM images demonstrate that an obvious phase‐separation happens in both melt‐blended and solution‐blended iPP/EPR samples, implying that compared with the disperse degree of EPR in iPP, the preparation method plays a dominant role in formation of β‐iPP. It is suggested that the origin of formation of β‐iPP results from the thermomechanical history of the EPR component in iPP/EPR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1704–1712, 2007  相似文献   
32.
Bioassay‐guided fractionation of the methanol extract of Odontadenia macrantha afforded a new limonoid, odontadenin A (1) and two known triterpenoids, lupeol (2) and α‐amyrin (3). The structure of 1 was established on the basis of 1D and 2D NMR and high‐resolution fast atom bombardment mass spectrometric data. The new compound was found to possess moderate cytotoxicity against A2780, the ovarian cancer cell line. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
33.
The synthesis of 1,2,3,4-dihydropyrimidinone/thione derivatives was achieved in good to excellent yields using calcium(II) nitrate as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, β-keto compounds and urea or thiourea. The reaction was carried out under solvent-free conditions.  相似文献   
34.
35.
36.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
37.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
38.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
39.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
40.
Two kinds of new glycopolymers, (P(VB‐1‐GlcaH‐co‐AAm), 9 ) and (P(VB‐1‐Glco‐co‐AAm), 10 ), were synthesized through the radical copolymerization of styrene derivatives bearing pendant D ‐glucaric and D ‐gluconic moieties, N‐(p‐vinylbenzyl)‐1‐D ‐glucaramide (VB‐1‐GlcaH, 7 ), and N‐(p‐vinylbenzyl)‐D ‐gluconamide (VB‐1‐Glco, 8 ), with acrylamide (AAm). Glycopolymer 9 bearing the pendant glucaric moiety at the first position inhibited the hydrolysis of a model compound for xenobiotics‐β‐glucuronide conjugates, p‐nitrophenyl β‐D ‐glucuronide, uncompetitively, in contrast to the competitive inhibition in the presence of the corresponding isomeric glycopolymer bearing the pendant D ‐glucaric unit at the sixth position (P(VB‐6‐GlcaH‐co‐AAm), 3 ) reported in our previous article. On the other hand, another copolymer 10 bearing the gluconic moiety was found not to inhibit the hydrolysis as well as the corresponding copolymer bearing pendant gulonic unit (P(VB‐6‐Glco‐co‐AAm), 4 ). These results indicate that the hydrolysis is influenced not only by existence of pendant carboxyl units but also by the direction on the linkage of the glyco‐units to the polymer frame. Therefore the configurational position of hydroxy groups in pendant glyco‐units in macromolecular inhibitors may be essential for the interaction with β‐glucuronidase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4895–4903, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号