首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71915篇
  免费   5677篇
  国内免费   14576篇
化学   70789篇
晶体学   2109篇
力学   684篇
综合类   629篇
数学   3329篇
物理学   14628篇
  2024年   199篇
  2023年   1173篇
  2022年   2453篇
  2021年   2414篇
  2020年   2466篇
  2019年   2315篇
  2018年   1911篇
  2017年   2430篇
  2016年   2652篇
  2015年   2358篇
  2014年   3011篇
  2013年   6513篇
  2012年   4712篇
  2011年   4620篇
  2010年   3996篇
  2009年   4784篇
  2008年   4665篇
  2007年   4911篇
  2006年   4627篇
  2005年   4128篇
  2004年   3874篇
  2003年   3205篇
  2002年   2678篇
  2001年   2125篇
  2000年   2011篇
  1999年   1632篇
  1998年   1371篇
  1997年   1265篇
  1996年   1114篇
  1995年   1077篇
  1994年   962篇
  1993年   781篇
  1992年   747篇
  1991年   555篇
  1990年   403篇
  1989年   380篇
  1988年   298篇
  1987年   201篇
  1986年   154篇
  1985年   158篇
  1984年   139篇
  1983年   63篇
  1982年   104篇
  1981年   116篇
  1980年   84篇
  1979年   85篇
  1978年   65篇
  1977年   54篇
  1976年   33篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
41.
15N isotopic enrichment was necessary for the unequivocal assignment of the 1H NMR lines to the protons in the NH–OH fragment of benzohydroxamic acid, BHXA, C6H5CONHOH, in dry dimethyl sulfoxide solutions. The assignment [δ(NH) = 11.21, δ(OH) = 9.01, 1J(15N,1H) = 102.2 Hz, 2J(15N,1H) <1.5 Hz], which is opposite to that used by other authors, confirms the assignment extended to BHXA by Brown and co‐workers from the spectra of acetohydroxamic acid. The enrichment allowed also assignment of the 29Si lines in the spectra of disilylated benzohydroxamic acid, (Z)‐tert‐butyldimethylsilyl Ntert‐butyldimethylsilyloxybenzoimidate (2) and (Z)‐tert‐butyldiphenylsilyl Ntert‐butyldiphenylsilyloxybenzoimidate (3), and confirmed structure of the monosilylated products, Ntert‐butyldiphenylsilyloxybenzamide (4) and Ntert‐butyldiphenylsilyloxy benzoimidic acid (5). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
42.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
43.
The influence of humic substances on sorption and methylation processes for inorganic- and organotin species is presented. Four sediment samples from different locations of the Rivers Elbe, Mulde and Spittelwasser, Germany, with different organotin and humic contents were selected to extract the humic and fulvic acids. The various fractions—the original sediment, the humic acid, the fulvic acid and the residual sediment—were analysed for their organotin content. The individual buyltin species show quite different distribution patterns. Monobutyltin is found mostly associated with humic acids. Dibutyltin shows a nonunique behaviour. At low total organotin content, dibutyltin is found bonded to humic and fulvic acids, whereas at high organotin content dibutyltin is distributed more with the residual sediment. Most of the tributyltin remains in the sediment unextracted; only small quantities of it are in the fulvic acid fraction. Tetrabutyltin is only in the humic acid fraction when it binds to humic matter; it mostly remains in the sediment. General observations indicate that ionic butyltin species bind to fulvic acids whereas the non-polar tetrabutyltin is not found in the fulvic acid fractions in any of the samples. The appearance of monomethyl- and dimethyl-tin species in the humic and fulvic acid fractions after the alkaline extraction was surprising. There is a correlation between the humic content of the sample and the formation of methyltin species. Evidence is provided by experiments that humic substances act as methylation agents.  相似文献   
44.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
45.
46.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
47.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
48.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   
49.
Two kinds of new glycopolymers, (P(VB‐1‐GlcaH‐co‐AAm), 9 ) and (P(VB‐1‐Glco‐co‐AAm), 10 ), were synthesized through the radical copolymerization of styrene derivatives bearing pendant D ‐glucaric and D ‐gluconic moieties, N‐(p‐vinylbenzyl)‐1‐D ‐glucaramide (VB‐1‐GlcaH, 7 ), and N‐(p‐vinylbenzyl)‐D ‐gluconamide (VB‐1‐Glco, 8 ), with acrylamide (AAm). Glycopolymer 9 bearing the pendant glucaric moiety at the first position inhibited the hydrolysis of a model compound for xenobiotics‐β‐glucuronide conjugates, p‐nitrophenyl β‐D ‐glucuronide, uncompetitively, in contrast to the competitive inhibition in the presence of the corresponding isomeric glycopolymer bearing the pendant D ‐glucaric unit at the sixth position (P(VB‐6‐GlcaH‐co‐AAm), 3 ) reported in our previous article. On the other hand, another copolymer 10 bearing the gluconic moiety was found not to inhibit the hydrolysis as well as the corresponding copolymer bearing pendant gulonic unit (P(VB‐6‐Glco‐co‐AAm), 4 ). These results indicate that the hydrolysis is influenced not only by existence of pendant carboxyl units but also by the direction on the linkage of the glyco‐units to the polymer frame. Therefore the configurational position of hydroxy groups in pendant glyco‐units in macromolecular inhibitors may be essential for the interaction with β‐glucuronidase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4895–4903, 2006  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号