全文获取类型
收费全文 | 51420篇 |
免费 | 4993篇 |
国内免费 | 10487篇 |
专业分类
化学 | 46291篇 |
晶体学 | 1876篇 |
力学 | 634篇 |
综合类 | 419篇 |
数学 | 3315篇 |
物理学 | 14365篇 |
出版年
2024年 | 164篇 |
2023年 | 955篇 |
2022年 | 1800篇 |
2021年 | 1790篇 |
2020年 | 1829篇 |
2019年 | 1658篇 |
2018年 | 1358篇 |
2017年 | 1742篇 |
2016年 | 1826篇 |
2015年 | 1588篇 |
2014年 | 2117篇 |
2013年 | 4668篇 |
2012年 | 3200篇 |
2011年 | 3421篇 |
2010年 | 2976篇 |
2009年 | 3821篇 |
2008年 | 3715篇 |
2007年 | 3634篇 |
2006年 | 3377篇 |
2005年 | 2866篇 |
2004年 | 2738篇 |
2003年 | 2309篇 |
2002年 | 1984篇 |
2001年 | 1599篇 |
2000年 | 1504篇 |
1999年 | 1199篇 |
1998年 | 996篇 |
1997年 | 850篇 |
1996年 | 745篇 |
1995年 | 750篇 |
1994年 | 666篇 |
1993年 | 533篇 |
1992年 | 505篇 |
1991年 | 382篇 |
1990年 | 259篇 |
1989年 | 227篇 |
1988年 | 195篇 |
1987年 | 128篇 |
1986年 | 99篇 |
1985年 | 113篇 |
1984年 | 91篇 |
1983年 | 36篇 |
1982年 | 66篇 |
1981年 | 92篇 |
1980年 | 64篇 |
1979年 | 67篇 |
1978年 | 44篇 |
1977年 | 50篇 |
1976年 | 30篇 |
1973年 | 31篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Ginette Ratovo Jean‐Pierre Souchard Pascale Urizzi Yvon Coulais Franoise Nepveu Etienne Hollande 《应用有机金属化学》2004,18(1):1-8
Pancreatic cancer has an extremely poor prognosis, due, in part, to lack of methods for early diagnosis. The present study was designed to evaluate the potential of labeling low‐density lipoprotein (LDL) with a radionuclide using a lipid chelating agent, bis(stearylamide) of diethylenetriaminepentaacetic acid (L), to detect pancreatic tumors by gamma‐scintigraphy. Previous studies indicated that the difficulty of visualization of pancreatic tumors was due to their poor vascularization. This study compares the ability of two radiotracers, 111In–L–LDL and 153Gd–L–LDL to target highly vascularized rat pancreatic tumors (AR4‐2J) implanted in nude mice. Biodistribution studies showed that the tumor uptake of 111In–L–LDL and 153Gd–L–LDL tracers was twofold and fivefold higher respectively than with the controls (111In citrate and 153Gd citrate respectively). These tracers would thus be suitable for scintigraphic imaging. We show here that LDL could be employed as a delivery system for tracers such as 111In or 153Gd when these two radionuclides are complexed by a lipid‐chelating anchor, and that 111In–L–LDL and 153Gd–L–LDL enabled better visualization of the pancreatic tumor tissues, with a better result with 153Gd–L–LDL. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
32.
Yonggang Shangguan Li Zhao Liyang Tao Qiang Zheng 《Journal of Polymer Science.Polymer Physics》2007,45(13):1704-1712
The effects of preparation method, composition, and thermal condition on formation of β‐iPP in isotactic polypropylene/ethylene–propylene rubber (iPP/EPR) blends were studied using modulated differential scanning calorimeter (MDSC), wide angle X‐ray diffraction (WAXD), and phase contrast microscopy (PCM). It was found that the α‐iPP and β‐iPP can simultaneity form in the melt‐blended samples, whereas only α‐iPP exists in the solution‐blended samples. The results show that the formation of β‐iPP in the melt‐blended samples is related to the crystallization temperature and the β‐iPP generally diminishes and finally vanishes when the crystallization temperature moves far from 125 °C. The phenomena that the lower critical temperature of β‐iPP in iPP/EPR obviously increases to 114 °C and the upper critical temperature decreases to 134 °C indicate the narrowing of temperature interval, facilitating the formation of β‐iPP in iPP/EPR. Furthermore, it was found that the amount of β‐iPP in melt‐blended iPP/EPR samples is dependent on the composition and the maximum amount of β‐iPP formed when the composition of iPP/EPR blends is 85:15 in weight. The results through examining the effect of annealing for iPP/EPR samples at melt state indicate that this annealing may eliminate the susceptibility to β‐crystallization of iPP. However, only α‐iPP can be observed in solution‐blended samples subjected to annealing for different time. The PCM images demonstrate that an obvious phase‐separation happens in both melt‐blended and solution‐blended iPP/EPR samples, implying that compared with the disperse degree of EPR in iPP, the preparation method plays a dominant role in formation of β‐iPP. It is suggested that the origin of formation of β‐iPP results from the thermomechanical history of the EPR component in iPP/EPR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1704–1712, 2007 相似文献
33.
《Magnetic resonance in chemistry : MRC》2003,41(2):139-142
Bioassay‐guided fractionation of the methanol extract of Odontadenia macrantha afforded a new limonoid, odontadenin A (1) and two known triterpenoids, lupeol (2) and α‐amyrin (3). The structure of 1 was established on the basis of 1D and 2D NMR and high‐resolution fast atom bombardment mass spectrometric data. The new compound was found to possess moderate cytotoxicity against A2780, the ovarian cancer cell line. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
34.
DEBACHE Abdelmadjid BOULCINA Raouf TAFER Radia BELFAITAH Ali RHOUATI Salah CARBONI Bertrand 《中国化学》2008,26(11):2112-2116
The synthesis of 1,2,3,4-dihydropyrimidinone/thione derivatives was achieved in good to excellent yields using calcium(II) nitrate as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, β-keto compounds and urea or thiourea. The reaction was carried out under solvent-free conditions. 相似文献
35.
36.
37.
Xiu‐Li Wang Ke‐Ke Yang Yu‐Zhong Wang Zhi‐Xuan Zhou Yong‐Dong Jin 《Journal of polymer science. Part A, Polymer chemistry》2004,42(14):3417-3422
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004 相似文献
38.
L. Sauguet B. Ameduri B. Boutevin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4566-4578
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006 相似文献
39.
Panagiota G. Fragouli Hermis Iatrou Nikos Hadjichristidis Takuro Sakurai Akira Hirao 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):614-619
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006 相似文献
40.
Kejian Bian Michael F. Cunningham 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):414-426
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on N‐tert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006 相似文献