首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126108篇
  免费   14742篇
  国内免费   16039篇
化学   124233篇
晶体学   2848篇
力学   2160篇
综合类   629篇
数学   8471篇
物理学   18548篇
  2024年   199篇
  2023年   1173篇
  2022年   2478篇
  2021年   2613篇
  2020年   2956篇
  2019年   4384篇
  2018年   3890篇
  2017年   4819篇
  2016年   5298篇
  2015年   7121篇
  2014年   7493篇
  2013年   12359篇
  2012年   9606篇
  2011年   9219篇
  2010年   7692篇
  2009年   8279篇
  2008年   8448篇
  2007年   8093篇
  2006年   7568篇
  2005年   6992篇
  2004年   6243篇
  2003年   5351篇
  2002年   5450篇
  2001年   3485篇
  2000年   3245篇
  1999年   2124篇
  1998年   1371篇
  1997年   1267篇
  1996年   1115篇
  1995年   1077篇
  1994年   963篇
  1993年   781篇
  1992年   748篇
  1991年   555篇
  1990年   403篇
  1989年   380篇
  1988年   298篇
  1987年   201篇
  1986年   154篇
  1985年   158篇
  1984年   140篇
  1983年   63篇
  1982年   104篇
  1981年   116篇
  1980年   84篇
  1979年   85篇
  1978年   65篇
  1977年   54篇
  1976年   33篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
51.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
52.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   
53.
54.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
55.
We studied simulations by computer graphics to estimate the steric mechanism of the asymmetric polymerization of prochiral diene monomers in channels of inclusion compounds of steroidal bile acids, such as deoxycholic acid (DCA) and cholic acid. We applied a hierarchization method to interpret the crystal structures of bile acids, clarifying that the chiral host molecules associated to form characteristic 21-helical assemblies with uneven surfaces. A detailed analysis of the uneven channels in a close-packing state indicated that there were many possible arrangements of the monomers in the channels. The plausible arrangements in the channel could explain a previous study, which showed that the polymerization in the DCA channel yielded chiral polymers with a predominant configuration from prochiral diene monomers, such as 2-methyl-trans-1,3-pentadiene. On the basis of such simulation studies of the arrangements of guest monomers in the channel, we examined a plausible steric mechanism for asymmetric inclusion polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4648–4655, 2004  相似文献   
56.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   
57.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
58.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
59.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
60.
The whole controlled synthesis of novel amphiphilic polylactide (PLA)‐grafted dextran copolymers was achieved. The control of the architecture of such biodegradable and potentially biocompatible copolymers has required a three‐step synthesis based on the “grafting from” concept. The first step consisted of the partial silylation of the dextran hydroxyl groups. This protection step was followed by the ring‐opening polymerization of D ,L ‐lactide initiated from the remaining OH functions of the partially silylated polysaccharide. The third step involved the silylether group deprotection under very mild conditions. Based on previous studies, in which the control of the first step was achieved, this study is focused on the last two steps. Experimental conditions were investigated to ensure a controlled polymerization of D ,L ‐lactide, in terms of grafting efficiency, graft length, and transesterification limitation. After polymerization, the final step was studied in order to avoid degradation of both polysaccharide backbone and polyester grafts. The chemical stability of dextran backbone was checked throughout each step of the synthesis. PLA‐grafted dextrans and PLA‐grafted (silylated dextrans) were proved to adopt a core‐shell conformation in various solvents. Furthermore, preliminary experiments on the potential use of these amphiphilic grafted copolymers as liquid/liquid interface stabilizers were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2577–2588, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号