全文获取类型
收费全文 | 6356篇 |
免费 | 357篇 |
国内免费 | 475篇 |
专业分类
化学 | 2345篇 |
晶体学 | 87篇 |
力学 | 65篇 |
综合类 | 16篇 |
数学 | 2966篇 |
物理学 | 1709篇 |
出版年
2024年 | 8篇 |
2023年 | 29篇 |
2022年 | 85篇 |
2021年 | 84篇 |
2020年 | 85篇 |
2019年 | 119篇 |
2018年 | 118篇 |
2017年 | 132篇 |
2016年 | 111篇 |
2015年 | 109篇 |
2014年 | 138篇 |
2013年 | 421篇 |
2012年 | 248篇 |
2011年 | 467篇 |
2010年 | 419篇 |
2009年 | 639篇 |
2008年 | 622篇 |
2007年 | 584篇 |
2006年 | 453篇 |
2005年 | 305篇 |
2004年 | 225篇 |
2003年 | 224篇 |
2002年 | 168篇 |
2001年 | 155篇 |
2000年 | 144篇 |
1999年 | 120篇 |
1998年 | 120篇 |
1997年 | 100篇 |
1996年 | 71篇 |
1995年 | 109篇 |
1994年 | 108篇 |
1993年 | 95篇 |
1992年 | 53篇 |
1991年 | 37篇 |
1990年 | 33篇 |
1989年 | 30篇 |
1988年 | 32篇 |
1987年 | 22篇 |
1986年 | 20篇 |
1985年 | 23篇 |
1984年 | 17篇 |
1983年 | 10篇 |
1982年 | 18篇 |
1981年 | 9篇 |
1980年 | 20篇 |
1979年 | 15篇 |
1978年 | 11篇 |
1977年 | 4篇 |
1976年 | 10篇 |
1974年 | 4篇 |
排序方式: 共有7188条查询结果,搜索用时 15 毫秒
31.
A robust and efficient adaptive reweighted estimator of multivariate location and scatter 总被引:1,自引:0,他引:1
Daniel Gervini 《Journal of multivariate analysis》2003,84(1):116-144
This article proposes a reweighted estimator of multivariate location and scatter, with weights adaptively computed from the data. Its breakdown point and asymptotic behavior under elliptical distributions are established. This adaptive estimator is able to attain simultaneously the maximum possible breakdown point for affine equivariant estimators and full asymptotic efficiency at the multivariate normal distribution. For the special case of hard-rejection weights and the MCD as initial estimator, it is shown to be more efficient than its non-adaptive counterpart for a broad range of heavy-tailed elliptical distributions. A Monte Carlo study shows that the adaptive estimator is as robust as its non-adaptive relative for several types of bias-inducing contaminations, while it is remarkably more efficient under normality for sample sizes as small as 200. 相似文献
32.
33.
We develop a notion of an n-fold monoidal category and show that it corresponds in a precise way to the notion of an n-fold loop space. Specifically, the group completion of the nerve of such a category is an n-fold loop space, and free n-fold monoidal categories give rise to a finite simplicial operad of the same homotopy type as the classical little cubes operad used to parametrize the higher H-space structure of an n-fold loop space. We also show directly that this operad has the same homotopy type as the n-th Smith filtration of the Barratt-Eccles operad and the n-th filtration of Berger's complete graph operad. Moreover, this operad contains an equivalent preoperad which gives rise to Milgram's small model for when n=2 and is very closely related to Milgram's model of for n>2. 相似文献
34.
Jean-Paul Penot 《Bulletin des Sciences Mathématiques》2003,127(9):815-833
We introduce a notion of “firm” (or uniform) asymptotic cone to an unbounded subset of a normed space. We relate this notion to a concept of “firm” asymptotic function. We use these notions to study boundedness properties which can be applied to continuity questions for some operations on sets and functions. Such questions arise in stability analysis of Hamilton-Jacobi equations. We present some other applications such as an extension of a theorem of Dieudonné and existence results in optimization and fixed point theory. 相似文献
35.
Moxun Tang 《Journal of Differential Equations》2003,189(1):148-160
We prove uniqueness of positive radial solutions to the semilinear elliptic equation , subject to the Dirichlet boundary condition on an annulus in . As a by-product, our argument also provides a much simpler, if not the simplest, new proof for the uniqueness of positive solutions to the same problem in a finite ball or in the whole space . 相似文献
36.
Guoen Hu 《Journal of Mathematical Analysis and Applications》2003,283(2):351-361
boundedness is considered for the commutator of higher-dimensional Marcinkiewicz integral. Some conditions implying the and the boundedness for the commutator of the Marcinkiewicz integral are obtained. 相似文献
37.
Here we prove that every compact differential manifold has a smooth algebraic model defined over Q. In dimension 2 we find an algebraic model (may be singular) defined over Q and birational over Q to the projective plane. 相似文献
38.
Traveling salesman games 总被引:1,自引:0,他引:1
In this paper we discuss the problem of how to divide the total cost of a round trip along several institutes among the institutes visited. We introduce two types of cooperative games—fixed-route traveling salesman games and traveling salesman games—as a tool to attack this problem. Under very mild conditions we prove that fixed-route traveling salesman games have non-empty cores if the fixed route is a solution of the classical traveling salesman problem. Core elements provide us with fair cost allocations. A traveling salesman game may have an empty core, even if the cost matrix satisfies the triangle inequality. In this paper we introduce a class of matrices defining TS-games with non-empty cores. 相似文献
39.
V. I. Levenshtein 《Acta Appl Math》1992,29(1-2):1-82
Finite and infinite metric spaces % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] that are polynomial with respect to a monotone substitution of variable t(d) are considered. A finite subset (code) W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is characterized by the minimal distance d(W) between its distinct elements, by the number l(W) of distances between its distinct elements and by the maximal strength (W) of the design generated by the code W. A code W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is called a maximum one if it has the greatest cardinality among subsets of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with minimal distance at least d(W), and diametrical if the diameter of W is equal to the diameter of the whole space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. Delsarte codes are codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with (W)2l(W)–1 or (W)=2l(W)–2>0 and W is a diametrical code. It is shown that all parameters of Delsarte codes W) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are uniquely determined by their cardinality |W| or minimal distance d(W) and that the minimal polynomials of the Delsarte codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are expansible with positive coefficients in an orthogonal system of polynomials {Q
i(t)} corresponding to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. The main results of the present paper consist in a proof of maximality of all Delsarte codes provided that the system {Q
i)} satisfies some condition and of a new proof confirming in this case the validity of all the results on the upper bounds for the maximum cardinality of codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with a given minimal distance, announced by the author in 1978. Moreover, it appeared that this condition is satisfied for all infinite polynomial metric spaces as well as for distance-regular graphs, decomposable in a sense defined below. It is also proved that with one exception all classical distance-regular graphs are decomposable. In addition for decomposable distance-regular graphs an improvement of the absolute Delsarte bound for diametrical codes is obtained. For the Hamming and Johnson spaces, Euclidean sphere, real and complex projective spaces, tables containing parameters of known Delsarte codes are presented. Moreover, for each of the above-mentioned infinite spaces infinite sequences (of maximum) Delsarte codes not belonging to tight designs are indicated. 相似文献