首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   50篇
  国内免费   556篇
化学   1009篇
晶体学   1篇
力学   1篇
综合类   14篇
数学   1篇
物理学   83篇
  2024年   3篇
  2023年   15篇
  2022年   13篇
  2021年   21篇
  2020年   21篇
  2019年   31篇
  2018年   25篇
  2017年   40篇
  2016年   36篇
  2015年   33篇
  2014年   51篇
  2013年   58篇
  2012年   57篇
  2011年   43篇
  2010年   49篇
  2009年   58篇
  2008年   58篇
  2007年   62篇
  2006年   43篇
  2005年   45篇
  2004年   47篇
  2003年   33篇
  2002年   38篇
  2001年   32篇
  2000年   24篇
  1999年   17篇
  1998年   16篇
  1997年   20篇
  1996年   9篇
  1995年   17篇
  1994年   13篇
  1993年   20篇
  1992年   15篇
  1991年   13篇
  1990年   7篇
  1989年   3篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
排序方式: 共有1109条查询结果,搜索用时 15 毫秒
41.
利用Benson基团贡献法计算了乙烯齐聚制α-烯烃反应各物质的标准摩尔生成焓、标准摩尔熵和摩尔定压热容,在298~700 K温度范围内对乙烯齐聚制α-烯烃反应体系的反应热、吉布斯自由能以及反应平衡常数进行了详尽的计算,分析了不同反应步骤的热力学平衡与限度,对不同反应发生的热力学可能性与顺序进行了判断,考察了反应温度和压力对乙烯齐聚制α-烯烃反应化学平衡的影响,确定了乙烯齐聚制α-烯烃反应体系适宜的工艺条件.结果表明:乙烯齐聚制α-烯烃反应为放热反应;从热力学上看,温度低于546 K时,乙烯齐聚生成直链α-烯烃反应为自发过程,且比α-烯烃异构化和烯烃歧化反应更容易进行;低温、高压有利于乙烯齐聚制α-烯烃反应的进行;乙烯齐聚制α-烯烃反应体系适宜的工艺条件为温度323~473 K,压力5~20 MPa,且在SHOP法的工艺条件下(温度363 K,压力10.3 MPa),乙烯齐聚生成直链α-烯烃反应的热力学平衡转化率接近于100%.  相似文献   
42.
以离子液体溴化(1-己基-3-甲基咪唑盐)作为电解质和掺杂剂采用电化学一步法制备了微纳米复合结构的聚(3,4-乙烯基二氧噻吩)薄膜,薄膜由槽内排布着纳米珠链的棒状结构组成. 研究表明,通过控制电流密度的大小,可以调节棒状结构和珠状结构的平均直径. 离子液体中的咪唑阳离子和对阴离子均掺杂到聚合物中,该薄膜具有可逆的电化学活性及水下超疏油特性.  相似文献   
43.
孙诗萌 《分子催化》2021,35(3):116-126
Cr/PNP催化乙烯选择性齐聚反应制短链线性α-烯烃(LAOs)技术是近年来发展极为迅速的研究方向,其中关于反应微观机理的研究对高性能催化剂设计和研发具有重要意义.通过使用量子化学计算与实验相结合的方法,可以获得对催化反应过程更为深刻的认识.我们主要从理论计算研究的角度,总结了铬系催化剂催化乙烯选择性齐聚研究中取得的最新成果.主要内容包括反应过程中催化剂的氧化态[Cr(Ⅰ/Ⅲ) vs Cr(Ⅱ/Ⅳ)],反应路径中单乙烯和双乙烯配位的竞争,配体的空间结构和电子效应,自然键轨道理论(NBO)以及H_2效应对催化体系的影响等.  相似文献   
44.
采用光-流变学方法研究了丙烯酸酯/液晶复合体系的光聚合凝胶时间及体积收缩率,并与密度法测量的体积收缩率进行了对比.结果表明,该复合体系的凝胶时间小于10 s,光-流变学方法可以在线测量丙烯酸酯单体/液晶复合体系的光聚合体积收缩.以2种不同结构的多面体齐聚倍半硅氧烷(POSS)掺杂丙烯酸酯/液晶复合体系,八甲基丙烯酰氧基倍半硅氧烷(MA-POSS)使丙烯酸酯/液晶复合体系的双键转化率略有降低,掺杂10 wt%MA-POSS使体系的光聚合体积收缩率仅降低了12%;而甲基丙烯酰氧基七异丁基倍半硅氧烷(MI-POSS)对体系双键转化率的影响较小,显著降低了体系的光聚合体积收缩,掺杂10 wt%MI-POSS使体系的光聚合体积收缩率降低29%.  相似文献   
45.
利用无溶剂微波合成法制备了两种新颖的取代噻吩基修饰吡啶酰胺分子吡啶-2,6-二[N-(2'-噻吩基甲基)甲酰胺](L1)和吡啶-2,6-二[N-(2'-噻吩基乙基)甲酰胺](L2),其合成过程无需溶剂,反应速度快,操作简单,节能环保。通过元素分析、1H-NMR、13C-NMR、IR及UV等表征手段对目标化合物L1和L2的分子结构进行了确认,对化合物的核磁谱线、红外特征吸收峰及紫外最大吸收峰进行了归属分析,丰富了吡啶酰胺类化合物的光谱数据。  相似文献   
46.
在热乙醇中合成了2-乙酰基噻吩缩异烟酰肼及其与Cd(II)、Cu(II)和Zn(II)形成的三种配合物;利用元素分析、摩尔电导测定,以及红外光谱、紫外光谱和热分析确定了合成产物的组成和结构,并测定了配合物的组成及发光性质.结果表明,酰肼的配位方式的不同导致配合物呈现不同的发光性质.  相似文献   
47.
通过银、钇双金属改性制备了Ag-Y/MIL-101吸附剂,并对Ag-Y/MIL-101进行了X射线衍射(XRD)、电镜(SEMEDS)、比表面积(BET)和热重(TG-DTG)表征。考察了Ag-Y/M IL-101金属负载顺序、金属负载浓度、金属溶液用量、负载时间对脱硫性能的影响,优化了吸附脱硫条件。结果表明,金属改性得到的Ag-Y/MIL-101保持了MIL-101的晶格结构。与M IL-101相比,Ag-Y/MIL-101的比表面积和孔容均有所下降。适宜Ag-Y/MIL-101的制备条件为:先负载银后负载钇,银离子和钇离子的负载浓度均为30 mmol/L,金属溶液用量均为1 mL,负载时间为8 h。适宜Ag-Y/MIL-101的吸附脱硫条件为:吸附剂用量0.05 g,模拟油为10 mL,吸附温度为60℃,吸附时间为8 h。在此条件下,Ag-Y/MIL-101对噻吩的吸附量达到21.7 mg/g。Ag能显著提高MIL-101的吸附硫容,Y能显著提高MIL-101的吸附选择性,因此,Ag-Y/MIL-101吸附剂中Ag和Y的协同作用使其拥有比MIL-101更高的硫容和噻吩脱硫选择性。  相似文献   
48.
张雷  马海燕 《化学学报》2020,78(8):778-787
合成并表征了一系列新型亚乙基桥联多取代茚-芴锆、铪配合物ansa-C2H4-{2-Me-3-Bn-5,6-[1,3-(CH23]Ind}-(Flu) ZrCl2C1),ansa-C2H4-{2-Me-3-Bn-5,6-[1,3-(CH23]Ind}(2,7-tBu2-Flu) ZrCl2C2),ansa-C2H4-{2-Me-3-Bn-5,6-[1,3-(CH23]Ind}(3,6-tBu2-Flu) ZrCl2C3),ansa-C2H4-{2-Me-3-Bn-5,6-[1,3-(CH23]Ind}(Flu) HfCl2C4),并对典型配合物进行了X射线单晶衍射分析,确定了其空间结构.研究了该系列配合物在助催化剂作用下催化丙烯齐聚的行为,考察了催化剂结构及反应条件对齐聚反应的影响.配合物C1C4与改性甲基铝氧烷(MMAO)或三异丁基铝/三苯甲基四(五氟苯基)硼酸盐(TIBA/TrB)组成的催化体系对丙烯齐聚表现出中等到高的催化活性.锆配合物C2C3在40~100℃条件下普遍具有较高的β-甲基消除(β-Me消除)选择性(最高可达86%),实现了分子量Mn在400到4500 g·mol-1范围内的烯丙基封端丙烯齐聚物的高效合成.铪催化剂体系C4/TIBA/TrB的β-Me消除选择性明显高于相应的锆催化剂体系,同时所得齐聚物的分子量更低.  相似文献   
49.
陈志强  陈静 《合成化学》2006,14(4):350-354,359
合成了未见报道的邻位噻吩基取代咪唑类氮氧自由基———NITS[2-(2′-噻吩基)-4,4,5,5-四甲基咪唑啉-3-氧化-1-氧基自由基]。NITS的晶体属单斜晶系,C2/c空间群,a=23.78(3),b=8.435(10),c=12.297(14),β=103.680(19)°,Z=8。NITS的电学性质经电子顺磁谱表征,并首次利用电化学分析探讨了其反应机理。  相似文献   
50.
聚乙撑二氧噻吩阳极降解的研究   总被引:1,自引:0,他引:1  
佘平平  汪正浩 《化学学报》2006,64(10):997-1003
研究了聚乙撑二氧噻吩(PEDOT)膜在水溶液中的阳极降解过程. 研究发现PEDOT的阳极过程可以分为p掺杂区[电位范围-0.3~0.5 V (相对于饱和甘汞电极; vs. SCE)]、过渡区[电位范围0.6~1 V (vs. SCE)]、过氧化区[电位范围1.2~1.6 V (vs. SCE)]三个电位区域. 用电化学阻抗谱法、循环伏安法、红外光谱技术、膜电阻测量以及电子自旋共振技术分别研究了PEDOT膜在这三个电位区域的行为. 结果表明: PEDOT膜在这三个电位区域的性质有明显不同. 在p掺杂区PEDOT膜的官能团、共轭结构、导电性均保持, 即在这个电位区发生可逆的掺杂/脱掺杂反应, 膜几乎不降解. 在过渡区和过氧化区, PEDOT膜均发生了降解. 与传统的导电聚合物在高电位的阳极降解的过氧化过程不同, 我们认为膜在较高电位(过渡区)发生一个驰豫过程, 该过程使得膜的官能团改变, 但是膜的共轭结构和导电性均保持; 而在更高的电位区(过氧化区)膜的降解和一般意义的过氧化降解相同, 此时膜的官能团、共轭结构、导电性均发生不可逆的破坏.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号