首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1904篇
  免费   487篇
  国内免费   1942篇
化学   3063篇
晶体学   156篇
力学   55篇
综合类   38篇
数学   70篇
物理学   951篇
  2024年   49篇
  2023年   165篇
  2022年   201篇
  2021年   214篇
  2020年   178篇
  2019年   142篇
  2018年   117篇
  2017年   142篇
  2016年   118篇
  2015年   143篇
  2014年   248篇
  2013年   285篇
  2012年   171篇
  2011年   204篇
  2010年   151篇
  2009年   190篇
  2008年   142篇
  2007年   228篇
  2006年   198篇
  2005年   153篇
  2004年   158篇
  2003年   157篇
  2002年   101篇
  2001年   115篇
  2000年   76篇
  1999年   37篇
  1998年   53篇
  1997年   32篇
  1996年   31篇
  1995年   28篇
  1994年   21篇
  1993年   19篇
  1992年   11篇
  1991年   17篇
  1990年   10篇
  1989年   16篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1959年   1篇
排序方式: 共有4333条查询结果,搜索用时 15 毫秒
991.
稀土氧化物LSCO/YSZ的XRD和XPS研究   总被引:4,自引:0,他引:4  
采用常规固相反应法制备了不同Sr掺杂量的钙钛矿氧化物La1-xSrxCoO3材料。测试了该材料的XRD和XPS谱,研究了不同热处理工艺对Lz1-xSrxCoO3材料平均晶粒度的影响,研究了不同Sr掺杂量的La1-xSrxCoO3阴极材料表面的化学状态。结果表明,当热处理温度在900-1200)时,平均晶粒度较大,有利于形成多孔电极。随着Sr掺杂量的增加,La(3d5/2),Co(2p3/2)的结合能下降,氧空位浓度增加。  相似文献   
992.
陈俊明  黄建顺 《化学学报》1992,50(12):1150-1156
Mossbauer谱学研究了Li│LiClO~4-PC│Fe~3-ωO~4电池放电过程中阳极反应电子在阴极Fe~3-ωO~4中的分布得出,一小部分电子进入氧化铁八面体FeO~6的t2~g非键轨道成为跳变电子,大部分电子则进入较高能量的反键轨道.  相似文献   
993.
聚丙烯腈基聚合物电解质   总被引:7,自引:0,他引:7  
唐致远  王占良 《化学通报》2002,65(6):379-384
详细介绍了锂离子电池用PAN(聚丙烯腈)基聚合物电解质的发展过程和制备方法,提出了PAN基凝胶型聚合物电解质所存在的主要问题,介绍了采用共聚和掺杂陶瓷材料对PAN的改性方法,并对聚合物电解质的离子传输机理作了初步探讨。  相似文献   
994.
自Sony公司推出锂离子二次电池以来,以AC/LiCoO2体系为主的商品锂离子电池由于具有高容量、高电压、环境友好等优势,已在便携式电子设备领域得到了广泛应用。但由于C/LiCoO2体系的锂离子电池存在成本、安全和寿命等方面的问题,限制了其在动力和储能领域的应用。选择合适的锂离子电池材料,开发新的电池体系是解决问题的关键。  相似文献   
995.
钟辉  许惠 《化学学报》2007,65(2):147-151
采用共沉淀-喷雾造粒法制备前驱体, 于750 ℃在空气中煅烧20 h合成出层状Li(Ni1/3Co1/3Mn1/3)O2正极材料, 并用XRD, SEM, 粒度分析和电性能测试考察了所得材料结构、形貌及电化学性能. 本层状Li(Ni1/3Co1/3Mn1/3)O2正极材料具有α-NaFeO2结构, 六方晶系, R3m空间群, 其晶胞参数为a=0.2865 nm, c=1.4238 nm. 当材料分别在2.8~4.2, 2.8~4.5 V间进行充放电时, 其首次放电容量分别为173.5和185.4 mAh•g-1, 首次充放电效率分别为90%和83.8%, 40次循环后容量保持率分别为96%和84%.  相似文献   
996.
采用高温固相合成法制备橄榄石型的LiFePO4正极材料,在合成过程中分别采用湿法球磨和干法球磨两种球磨方式。用X-射线衍射,扫描电镜,激光粒度测试等对合成材料进行表征,并对以LiFePO4为正极的电池进行电化学性能测试。结果表明,相对于干法球磨,湿法球磨制备的LiFePO4样品具有更好的电化学性能,0.2C放电的首次放电比容量为134.9 mAh·g-1,并有优良的大电流放电性能及循环性能。这主要是因为采用湿法球磨制备的LiFePO4材料物相较纯、粒径均匀,与导电添加剂的接触更加紧密,从而提高了LiFePO4材料电化学性能。  相似文献   
997.
采用溶胶凝胶/碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3及其掺Ti化合物Li3-2x(V1-xTix)2-(PO4)3. 电化学测试结果表明, 经Ti4+离子掺杂后材料的充放电性能及循环性能明显提高. 与纯相Li3V2(PO4)3在3.58、3.67和4.08 V出现三个平台相比, 掺杂后材料的前两个平台发生简并且平台趋于模糊的倾斜状态. 这种趋势随掺杂量的增大而增强. 差热分析(DTA)表明掺杂生成了稳定的酌相产物. 采用X射线衍射和Rietveld方法表征了化合物的晶体结构, 结果表明, 三个不同位置Li的不完全占据导致晶体中产生阳离子空穴, 使材料在常温下的离子电导率提高了3个数量级. 锂离子混排提高了样品的电导率和充放电比容量.  相似文献   
998.
尖晶石LiMn2O4的改性研究   总被引:4,自引:0,他引:4  
由于资源丰富、价格便宜、易制备、对环境无污染、可回收利用等优点,尖晶石型LiMn2O4成为锂离子二次电池中最有希望的正极材料[1~3]。然而,在高电压充、放电条件下,由于电极中锰的溶解和Jahn鄄Teller效应的发生,会造成LiMn2O4容量迅速衰减[4~6]。为了改善LiMn2O4的电化学性能,研究者主要通过优化合成条件及合成方法来控制产品的粒径分布与形貌,以利于锂离子的脱、嵌[7,8];用掺杂的方法以稳定其结构,抑制Jahn鄄Teller效应的发生[9,10];用表面修饰的方式来减少活性物质与电解液的直接接触从而降低Mn的溶解[11,12]。掺杂方面,Co3 不仅有…  相似文献   
999.
The kinetic characteristics of the concentrated Ⅴ(Ⅳ)/Ⅴ(Ⅴ) couple have been studied at a glassy carbon electrode in sulfuric acid using rotating-disc electrode and cyclic voltammetry. The kinetics of the Ⅴ(Ⅳ)/Ⅴ(Ⅴ) redox couple reaction was found to be electrochemically quasi-reversible with the slower kinetics for the Ⅴ(Ⅴ) reduction than that for the Ⅴ(Ⅳ) oxidation. And, dependence of diffusion coefficients and kinetic parameters of Ⅴ(Ⅳ) species on the Ⅴ(Ⅳ) and H2SO4 concentration was investigated. It is shown that the concentration of active species Ⅴ(Ⅳ) should be over 1 mol·L^-1 for the redox flow battery application. Further, with increasing the Ⅴ(Ⅳ) and H2SO4 concentration, the diffusion coefficients of Ⅴ(Ⅳ) were gradually reduced whereas its kinetics was improved considerably, especially in the case of Ⅴ(Ⅳ) and H2SO4 up to 2 and 4 mol·L^-1.  相似文献   
1000.
通过高温热解碳化将过期废药氨茶碱以氮掺杂碳的形式进行回收;利用扫描电子显微镜(SEM)、X射线能量色散光谱仪(EDX)及X射线光电子能谱(XPS)研究了其微观形貌与组成,并进一步利用恒流充/放电、循环伏安法(CV)及交流阻抗法(AC)测试其电化学储锂性能.令人满意的是,伴随着过期药品氨茶碱的碳化,其中的氮元素以原位掺杂的形式保留在碳材料中,所制备的碳电极在25 mA·g-1循环200圈时的可逆比容量仍能达到520.9 mAh·g-1;尤其是在大电流密度1 A·g-1循环200圈和2 A·g-1循环500圈时的可逆比容量仍分别稳定在203.5 mAh·g-1与84.8 mAh·g-1,表现出了良好的可逆电化学储锂性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号