全文获取类型
收费全文 | 613篇 |
免费 | 54篇 |
国内免费 | 231篇 |
专业分类
化学 | 601篇 |
晶体学 | 10篇 |
力学 | 5篇 |
综合类 | 5篇 |
数学 | 15篇 |
物理学 | 262篇 |
出版年
2024年 | 6篇 |
2023年 | 8篇 |
2022年 | 18篇 |
2021年 | 29篇 |
2020年 | 12篇 |
2019年 | 17篇 |
2018年 | 13篇 |
2017年 | 19篇 |
2016年 | 18篇 |
2015年 | 20篇 |
2014年 | 22篇 |
2013年 | 33篇 |
2012年 | 28篇 |
2011年 | 25篇 |
2010年 | 32篇 |
2009年 | 32篇 |
2008年 | 31篇 |
2007年 | 37篇 |
2006年 | 36篇 |
2005年 | 35篇 |
2004年 | 45篇 |
2003年 | 42篇 |
2002年 | 52篇 |
2001年 | 28篇 |
2000年 | 24篇 |
1999年 | 17篇 |
1998年 | 22篇 |
1997年 | 20篇 |
1996年 | 21篇 |
1995年 | 14篇 |
1994年 | 17篇 |
1993年 | 33篇 |
1992年 | 19篇 |
1991年 | 11篇 |
1990年 | 20篇 |
1989年 | 23篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 1篇 |
排序方式: 共有898条查询结果,搜索用时 15 毫秒
31.
通过原子吸收光谱法研究了在不同pH值、吸附剂量、吸附质浓度和吸附时间条件下磷酸酯化改性梨渣吸附Cr(Ⅵ)离子的效果。溶液初始pH 4.5时,Cr(Ⅵ)离子的吸附达到最大值;酯化梨渣≥10g.L-1能除去Cr(Ⅵ)为100μg.L-1溶液中的86.5%的Cr(Ⅵ)离子。酯化梨渣对Cr(Ⅵ)离子的吸附符合Langmuir等温模型,其最大吸附能力为67.56μg.g-1。Cr(Ⅵ)离子达到吸附平衡的时间为90min,准一级反应动力学方程可描述酯化梨渣对Cr(Ⅵ)离子的吸附过程。 相似文献
32.
铸态纯铀不耐腐蚀,放置于空气中在很短的时间内就会使表面氧化而变质。激光快速熔凝处理是激光表面改性技术中的一项重要而先进的技术内容,纯铀经过激光快速熔凝处理后,其抗腐蚀能力明显增强,同时也可以提高铀表层的耐磨性和疲劳强度。试验表明:激光快速熔凝处理的铀试样比未处理的铀明显增强,在空气中放置数年后,其处理层的颜色基本没有变化。 相似文献
33.
为了防止铀的腐蚀,采用在铀表面磁控溅射镀铝,但使用中发现铝镀层内产生了较大的应力,影响镀层结合强度及使用性能。通常认为,薄膜内的应力有热应力和生长应力两种。文中通过改变沉积温度、镀层厚度以及镀层力学性能分数,研究它们对镀层热应力分布的影响,从而为改善铀表面铝镀层内热应力分布提供理论依据。 相似文献
34.
35.
ICP-MS分析14种中药铀、钍、铊含量 总被引:1,自引:1,他引:1
微量元素尤其是有害元素的监测控制与中药质量密切相关。对14种肿瘤治疗常用中药用微波消解法进行处理,用电感耦合等离子体质谱(ICP-MS)法检测了其中铀、钍和铊的含量。结果显示14种中药中铀、钍和铊含量的变化范围分别为,铀,0.005 153~0.153 4 μg·g-1;钍,0.035 01~0.462 8 μg·g-1;铊,0.001 43~1.600 μg·g-1。铀、钍和铊的含量都较低,但个体含量差异较大。 采用统计软件SPSS11.5对结果进行分析比较,结果显示清热解毒类中药与以毒攻毒类中药中铀、钍和铊含量都无显著性差异;植物类药与动物类药中铀、钍和铊的含量也无显著性差异。ICP-MS法快速、灵敏、准确,可作为中药中铀、钍和铊含量分析的可靠方法,另一方面本研究结果为临床中药的安全使用和药物开发提供了参考数据。 相似文献
36.
使用改良的hummers法制备出的氧化石墨烯为载体,采用共沉淀法制备出磁性CoFe2O4/氧化石墨烯(MGO),再使用三乙烯四胺(TETA)对磁性CoFe2O4/氧化石墨烯进行氨基功能化,制备出氨基功能化磁性CoFe2O4/氧化石墨烯吸附剂.采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和扫描电子显微镜(SEM)对TETA-MGO的物相、化学组成和微观形貌进行表征,以TETA-MGO作为吸附剂去除电镀废水中Cr(Ⅵ),探讨吸附性能和吸附机理,分析TETA-MGO在外加磁场下的液固分离和再生吸附性能.结果表明纳米级立方尖晶石相磁性CoFe2O4均匀生长于氧化石墨烯的表面和片层之间,TETA通过C-N键与磁性氧化石墨烯(MGO)相连,氨基功能化成功,活性吸附位点增点.室温下,pH =2时吸附效果最佳,吸附120 min时达到吸附平衡,平衡吸附量约为48.66 mg·g-1,TETA-MGO对Cr(Ⅵ)的吸附动力学和吸附热力学可分别使用拟二级动力学模型和Langmuir等温吸附模型描述,吸附过程主要属于化学吸附控制的单分子层吸附,使用外加磁场可以对TETA-MGO实现简单的固液分离,TETA-MGO经过6次再生吸附后,对Cr(Ⅵ)的吸附量仅下降19.67;,说明具有良好的循环再生吸附能力. 相似文献
37.
38.
二安替比林基-4-羟基苯基甲烷及其与铬(Ⅵ)显色反应的研究 总被引:2,自引:0,他引:2
合成了二安替比林基-4-羟基苯基甲烷(DApHM),研究了它与铬(Ⅵ)的显色反应,建立了两个测定铬(Ⅵ)的新体系.在Mn(Ⅱ)和磷酸存在下,DApHM与 Cr(Ⅵ)反应生成橙红色产物,λ_max为435nm.CTMAB和Tween-80对该体系有明显增敏效果,其中CTMAB-DApHM-Cr(Ⅵ)体系ε为1.0 ×10~6;Tween-80-DApHM-Cr(Ⅵ)体系ε为6.9×10~5.Cr(Ⅵ)量在0.1~0.7μg/25mL间符合比尔定律.用于电镀废液和自来水中Cr(Ⅵ)的测定,结果满意. 相似文献
39.
40.
自J.C.Sullivan等人于1961年首次报道了五价锕系元素Np(V)和六价锕系元素U(Ⅵ)在高氯酸溶液中能够形成1:1型的“阳离子-阳离子”配合物以来^[1],五价锕系元素在酸性溶液中的这一特殊配位行为引起了人们的极大兴趣。随着对锕系元素在后处理中化学性质的进一步认识,相继报道了U(V)、Np(V)以及Am(V)等五价锕系元素与Np(Ⅵ)、U(Ⅵ)等六价锕系元素形成的“阳离子-阳离子”配合物^[2,3],随后又报道了五价Np(V)和Pu(V)与一系列三价过渡元素,如Cr(Ⅲ)、Rh(Ⅲ)、Sc(Ⅲ)、Ga(Ⅲ)、Fe(Ⅲ)、Ir(Ⅲ)和Bi(Ⅲ)形成的配合物^[4-7],之后又发现了五价U(V)和Np(V)与一系列一价、二价过渡元素,如Ag(Ⅰ)、Cu(Ⅱ)、Zn(Ⅱ)、Hg(Ⅱ)和PbⅡ等离子形成的1:1型的“阳离子-阳离子”配合物^[7]。这些配合物的发现,不仅丰富了已有的配位化学理论,而且对Purex流程常量U中微量裂片元素的分析提供了一定的参考价值。然而,由于研究手段的局限性和锕系元素化学性质的特殊性,有关五价锕系元素与六价锕第元素以及过滤元素“阳离子-阳离子”配合物的吸收光谱、配位机理尚未有系统研究。在研究了Np(V)-U(Ⅵ)吸收光谱的基础上,本文又详细考察了HCIO4介质中Np(V)-Np(V)以及Np(V)-Np(Ⅵ)配合物的吸收光谱,并求得了配合物形成过程的平衡常数,为进一步研究Np(V)的过程化学提供实验依据。 相似文献