首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   15篇
  国内免费   659篇
化学   1112篇
晶体学   1篇
力学   1篇
综合类   12篇
数学   1篇
物理学   52篇
  2024年   4篇
  2023年   10篇
  2022年   5篇
  2021年   13篇
  2020年   8篇
  2019年   11篇
  2018年   3篇
  2017年   23篇
  2016年   17篇
  2015年   9篇
  2014年   53篇
  2013年   49篇
  2012年   51篇
  2011年   50篇
  2010年   44篇
  2009年   55篇
  2008年   51篇
  2007年   68篇
  2006年   52篇
  2005年   65篇
  2004年   61篇
  2003年   47篇
  2002年   67篇
  2001年   57篇
  2000年   37篇
  1999年   35篇
  1998年   31篇
  1997年   32篇
  1996年   19篇
  1995年   22篇
  1994年   24篇
  1993年   16篇
  1992年   17篇
  1991年   24篇
  1990年   20篇
  1989年   17篇
  1988年   5篇
  1987年   7篇
排序方式: 共有1179条查询结果,搜索用时 203 毫秒
101.
以N-异丙基丙烯酰胺(NIPAAm)为单体, 二苯甲酮(BP)为光敏剂, 过硫酸胺(APS)为自由基引发剂, 采用溶液中光接枝方法制备了具有温度敏感特性的聚氨酯微球(PUS). 傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)结果表明, 在聚氨酯微球表面形成了聚异丙基丙烯酰胺(PNIPAAm)接枝聚合物层. 在接枝过程中, 延长反应时间与增加引发剂浓度均有利于提高接枝率. 常温下, 接枝率随反应时间延长呈线性增长, 当反应时间超过40 min后, 接枝率基本保持稳定; 而引发剂浓度对接枝率的影响存在最佳优化值, 即其浓度为单体质量分数的3%. 采用差示扫描量热法(DSC)对接枝改性前后聚氨酯微球的温敏特性进行分析表征, 证实改性后的微球在35 ℃左右出现低临界互溶温度(LCST), 在此温度附近表现出对温度敏感特性. 接触角测试与溶胀测试结果表明, 在低临界互熔温度以下, 接枝改性的聚氨酯微球具有良好的亲水性.  相似文献   
102.
采用等离子体引发的衰减链转移(DT)接枝聚合法,以丙烯酸(AA)为单体,碘仿为链转移剂,对聚丙烯(PP)薄膜进行表面改性。研究了水和N,N-二甲基甲酰胺(DMF)对等离子体引发聚合及等离子体引发DT聚合动力学的影响。结果表明,采用等离子体引发的方法可以实现DT可控-活性聚合,DMF介质中的可控性优于水介质,等离子体引发DT聚合的溶剂效应明显减弱,接枝量与转化率成正比关系并与FT-IR、接触角的表征结果相符。  相似文献   
103.
首先将聚砜(PSF)氯甲基化,制得氯甲基化聚砜(CMPSF),CMPSF流延成膜后与乙二胺(EDA)反应,制得表面键合有EDA的氨基化膜(AMPSF)。在此基础上,在水溶液体系中构建氨基-过硫酸盐表面引发体系,使甲基丙烯酸(MAA)发生接枝聚合,制得了功能接枝膜PSF-gPMAA。考察了影响膜接枝过程的主要因素,优化了接枝聚合条件。采用傅里叶红外光谱(FTIR)、光学显微镜(OM)及称重法对接枝膜PSF-g-PMAA进行了表征。最后研究了功能接枝膜对氧化苦参碱和金雀花碱两种生物碱化合物的吸附特性。结果表明,采用氨基-过硫酸盐表面引发体系,可以顺利地实施MAA在PSF膜表面的接枝聚合,接枝度随氨基化膜AMPSF表面氨基键合量的增大而增大,接枝聚合适宜的温度为50℃,溶液中适宜的过硫酸盐用量为单体质量的1.0%。在适宜的条件下可制得PMAA接枝度为4.62mg/cm2的接枝膜。凭借强静电相互作用和氢键作用的协同作用,功能接枝膜PSF-g-PMAA对生物碱化合物可产生强烈的吸附作用,在中性溶液中,对氧化苦参碱和金雀花碱的吸附容量分别可达277μg/cm2和331μg/cm2。  相似文献   
104.
CuS/TiO2纳米管异质结阵列的制备及光电性能   总被引:1,自引:0,他引:1  
利用水热反应制备了CuS/TiO2纳米管异质结阵列,采用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射谱(XRD)等手段表征了异质结阵列的表面形貌和晶体结构.电流-电压曲线结果表明,CuS/TiO2纳米管异质结阵列具有明显的整流效应.根据表面光电压谱和相位谱,在376~600 nm之间,CuS/TiO2纳米管异质结阵列表现为p型半导体特征,电子在表面聚集;在300~376 nm之间表现为n型半导体特征,空穴在表面聚集;在376 nm处异质结阵列的表面光伏响应为零.CuS/TiO2和CuS/ITO之间界面电场的不同导致异质结在不同波长范围内表面电荷聚集的差异.光电化学性能测试发现,以CuS/TiO2纳米管异质结阵列为光阳极组成的光化学太阳电池,在大气质量AM 1.5G,100 mW/cm2标准光强作用下具有0.4%的光电转换能力.  相似文献   
105.
在室温条件下,以天然高分子材料壳聚糖和稀土纳米氧化物为原料,用表面接枝法制备了两种RE2O3-TDI-壳聚糖(TDI=甲苯-2,4-二异氰酸酯,RE=镧,钕)杂化复合物,借助红外(IR)、热重(DSC-TG)、扫描电镜(SEM)等测试技术对所制备的壳聚糖杂化材料的物化性能进行了表征,并采用培养基扩散法和营养肉汤稀释法等抑菌实验方法对其进行了抑菌活性实验,结果表明该稀土纳米壳聚糖杂化材料具有很好的热稳定性及抑菌性能。  相似文献   
106.
利用粗粒化分子动力学(CGMD)方法研究了两亲性接枝共聚物在不同选择性溶剂中的自组装行为. 分析了主链刚性及链长对自组装结构的影响. 研究结果表明, 当溶剂对主链为良溶剂而对支链为不良溶剂时, 两亲性接枝共聚物随主链刚性的增加自组装形成花状胶束、 花桥状胶束及桥状胶束, 并且组分比例对自组装结构影响很大; 随着链长的增加, 柔性链出现单花状胶束到多花状胶束的转化. 当溶剂对主链为不良溶剂而对支链为良溶剂时, 可得到近球形或椭球形核壳状胶束及束状结构; 不同链长时, 柔性接枝共聚物链均只能得到近球形的单核壳状胶束.  相似文献   
107.
以稻草秸秆为原料,经粉碎后进行全植物秸秆的乙酰化改性,再用此乙酰化稻草同ε-己内酯(ε-CL)接枝共聚合成乙酰化稻草/聚己内酯接枝共聚物(ACSW-g-PCL)。研究了反应时间、反应温度、及单体用量对接枝率(G%)的影响。在反应温度140℃,反应时间10h,ε-CL对乙酰化稻草的质量比2:1时获得的接枝率最大为39%。产物的结构和性能通过红外光谱、核磁共振、扫描电镜、X-射线衍射和热分析仪表征,结果表明乙酰化稻草秸秆已成功接枝上聚己内酯(PCL)链段,经接枝ε-CL改性后的ACSW-g-PCL热稳定性有所改善,并具有了一定的热塑性。  相似文献   
108.
一种具有高效光致变色性能的WO3/ZnO纳米粒子复合体系   总被引:2,自引:0,他引:2  
WO3是一种重要的无机光致变色材料,在大屏幕显示和高密度信息存储等领域中具有广泛的应用前景[1~3].与有机光致变色材料相比,WO3稳定性好、成本低,但其光致变色效率较差.为了提高这类无机材料的变色效率,已经提出了各种解决方案并已取得了许多有意义的结果.例如将光响应材料与WO3复合可以有效地抑制光激发后电子的复合过程,从而提高参与变色过程的光生载流子的数量,改善WO3的光致变色性能.利用金纳米粒子对WO3薄膜进行修饰可以使其变色效率提高近2倍[4],而利用TiO2与WO3溶胶复合则可使变色效率提高近40倍[5].本文报道一种新型的WO3/ZnO纳米粒子复合体系.实验结果表明与WO3相比这种新型纳米粒子复合体系的变色效率可提高200倍以上.  相似文献   
109.
木质素磺酸镁接枝丙烯酰胺的影响因素   总被引:14,自引:0,他引:14  
天然高分子化合物木质素是木材水解工业和造纸工业的副产物。早期人们在研究纤维素同甲基丙烯酸甲酯、丙烯腈的接枝反应中时发现了木质素的接枝反应活性[1],Meisterh和Patil[2]则实现了将—CONH2接枝于木质素的设想,雷中方[3]等研究了木质素同具有较好吸附能力的—CONH2的接枝改性,并讨论了改性产物的水处理性能,他们所用的木质素是采用酸析法从碱法草浆黑液中提取的。本文以酸法制浆的红液 木素磺酸镁为原料,合成了木质素 丙烯酸胺接枝共聚物,并对接枝聚合过程中的引发体系、引发剂浓度、反应温度、木素与单体用量比、固液比等影…  相似文献   
110.
形态结构和光电特性对纳米TiO2光催化性能的影响   总被引:6,自引:0,他引:6  
采用sol-gel法制备了系列纳米TiO2光催化剂,运用X射线衍射、BET比表面测定、紫外漫反射吸收光谱和表面光电压谱等手段对催化剂进行表征,并以乙烯作为光催化反应的指标反应分子,研究了TiO2纳米晶的性质对于光催化活性的影响.随着焙烧温度的升高,TiO2的晶粒逐渐增大,比表面积下降,晶相由锐钛矿向金红石转变,其吸收带边与光伏响应阈值向长波方向移动,氧化-还原能力降低,降解乙烯的转化率迅速下降.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号