首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9731篇
  免费   1179篇
  国内免费   6654篇
化学   12584篇
晶体学   83篇
力学   324篇
综合类   321篇
数学   1309篇
物理学   2943篇
  2024年   66篇
  2023年   247篇
  2022年   281篇
  2021年   309篇
  2020年   257篇
  2019年   321篇
  2018年   192篇
  2017年   318篇
  2016年   467篇
  2015年   412篇
  2014年   753篇
  2013年   674篇
  2012年   683篇
  2011年   705篇
  2010年   657篇
  2009年   727篇
  2008年   781篇
  2007年   745篇
  2006年   766篇
  2005年   716篇
  2004年   787篇
  2003年   663篇
  2002年   651篇
  2001年   600篇
  2000年   378篇
  1999年   499篇
  1998年   503篇
  1997年   479篇
  1996年   430篇
  1995年   474篇
  1994年   413篇
  1993年   334篇
  1992年   342篇
  1991年   288篇
  1990年   232篇
  1989年   204篇
  1988年   86篇
  1987年   57篇
  1986年   24篇
  1985年   21篇
  1984年   8篇
  1983年   7篇
  1982年   5篇
  1979年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
本文叙述Kustaanheimo–Stiefel变量及其从四元数发展形成的过程,以及Kustaanheimo–Stiefel变换在二体问题正规化中的应用。  相似文献   
2.
利用G-四链体DNA(T30695)催化Zn2+插入到中卟啉IX(MPIX)中,引起荧光偏移的特点,建立了检测Zn2+的方法。在40μmol/L MPIX、0.6μmol/L Pb2+、5μmol/L T30695和1%Triton的最优实验条件下,该方法在Zn2+浓度为0.5~5μmol/L范围内呈现良好的线性关系,相关系数R2=0.95,检出限为73.5 nmol/L。离子选择性实验表明该方法对Zn2+具有较好的选择性,用于实际样品测定,回收率在94.7%~100.4%之间。  相似文献   
3.
聚山梨酯80又名吐温80,为一种亲水型非离子表面活性剂,是食品、保健品和药品中常用的辅料,作为增溶剂和澄清剂广泛用于中药注射剂。近年来,不良反应的发生使得聚山梨酯80的质量和应用愈加受到重视,有研究认为其加入可能引起注射剂不良反应增加。为避免超量使用,有必要对该辅料的投料加以严格控制。中药注射剂中聚山梨酯80的含量测定是当下研究的热点和难点,可以通过分光光度法、分子排阻-蒸发光散射检测法(SEC-ELSD)、液质联用法(LC-MS)直接测定,也可以水解后法经液相色谱-紫外检测法(HPLC-UV)或气相色谱法(GC)间接测定。但由于聚山梨酯80为聚氧乙烯聚合数目不同的混合物、不同厂家生产的聚山梨酯80化学组分及比例存在较大差异,难以采用统一的转换公式或对照品准确定量。此外,中药注射剂的复杂基质造成的假阳性干扰也对定量提出了挑战。为解决以上问题,以生脉注射液为例,提出基于吸收系数的中药注射剂中聚山梨酯80含量测定新方法。优化检测波长、显色剂种类、液液萃取过程振荡和静置时间,在6个不同品牌仪器上测得聚山梨酯80-硫氰酸钴配合物的吸收系数(E1%1 cm)为104.23,相对标准偏差(RSD)为2.08%。生脉注射液稀释10倍后,精密量取供试品溶液1.0 mL,精密加入硫氰酸钴溶液10 mL,二氯甲烷20 mL,涡旋振荡3 min。将混合液移至分液漏斗中,静置30 min,取下层二氯甲烷液,将前1 mL弃去,接收约15 mL,在320 nm处测定吸光度,再根据Lambert-Beer定律,利用获得的吸收系数计算得到聚山梨酯80的含量。方法阴性无干扰,精密度和重复性相对标准偏差均低于3%,平均回收率为98.42%。为进一步验证方法的准确性,分别采用吸收系数法和标准曲线法测定了2个厂家的10批生脉注射液,并与实际投料量比较。配对t检验结果表明,当置信度为95%时,两种方法无显著性差异,吸收系数法测得结果与企业生产中聚山梨酯的实际投料量也无显著性差异。研究采用前人未采用的、灵敏度更高的320 nm为检测波长,显著降低了基质干扰,克服了中药注射剂中聚山梨酯80测定结果与实际投料量难以吻合的问题。吸收系数法无需使用对照品,亦不用制备标准曲线,可为中药注射剂中聚山梨酯80的检查标准提供切实可行的解决方案。所建方法灵敏、准确、快速、简便,为含聚山梨酯80制剂的质量控制提供了关键常数及新的思路。  相似文献   
4.
采用密度泛函理论B3LYP方法,研究了锡苯和铅苯的[2+2],[4+2]及[4+4]二聚反应的微观机理和势能剖面,考察了Sn(Pb)原子上的2,4,6-三甲基苯基(Mes)取代基对反应势能剖面的影响.研究结果表明,所有反应均为协同过程,且大多数情况下,2个C—Sn(Pb)键同步形成.[2+2]和[4+2]反应在热力学和动力学上均比相应的[4+4]反应容易进行,而[4+2]反应在动力学上比相应的[2+2]反应有利.Sn(Pb)原子上的Mes取代基在热力学和动力学上均不利于反应的进行.铅苯的动力学稳定性与锡苯相当,但其热力学稳定性高于锡苯.  相似文献   
5.
6.
报道四苯并卟啉锌/芳晴/有机玻璃TZT/AC/PMMA体系光化学烧孔的光谱稳定性、多重烧孔及激光诱导的填孔效应。 关键词:  相似文献   
7.
355nm Nd∶YAG激光在H_2中的高效一级斯托克斯转换   总被引:1,自引:1,他引:0  
对脉冲Nd∶YAG激光(355 nm)在H2和H2∶He-Ar混合气体中的受激拉曼散射(SRS)进行了研究。在0.5 MPa的氢气中,同时测量到从二级反斯托克斯到三级斯托克斯的多波长输出,其总转化效率达88%;而高压下只剩下一级和二级斯托克斯输出,其中二级斯托克斯最大能量转化效率达44%(对应量子效率为63%)。由于高级斯托克斯的竞争,纯氢气中一级斯托克斯的最大能量转换效率不超过43%。通过向3 MPa氢气中掺入2 MPaAr气后,很好地抑制了二级斯托克斯的产生,从而获得了能量转换效率高达71%(对应量子效率为83%)的一级斯托克斯输出。对四波混频和级联受激拉曼散射在氢气多级斯托克斯产生中的作用以及惰性气体对它们的影响进行了讨论。  相似文献   
8.
关于四元数矩阵乘积迹的不等式   总被引:1,自引:0,他引:1  
设 H~(m×n)为 m×n 四元数矩阵的集合,σ_1(A)≥…≥σ_n(A)为 A∈H~(mxn)的奇异值。本文证明了:1)设 A∈H~(mxm),B∈H~(mxm),r=min(m,m),则|tr(4B)|≤c r σ_i(A)σ_i(B).2)设 A_i∈H~(mxm),i=1,2,…,n,(A_1A_2…A_n)k为 A_1A_2…A_n 的任一个 k 阶主子阵,则|tr(A_1.A_2…A_n)_k|≤sun form i=1 to k σ_i(A_1)…σ_i(A_n).我们还得到四元数矩阵迹的其它一些不等式。这些结果推广和改进了文[1],[2]中的结果,进一步解决了 Bellman 猜想。  相似文献   
9.
提出了一种基于微悬臂梁传感技术研究大分子折叠/构象转变的新方法.通过分子自组装的方法将热敏性的聚N-异丙基丙烯酰胺(PNIPAM)分子链修饰到微悬臂梁的单侧表面,用光杠杆技术检测温度在20-40 ℃之间变化时由于微悬臂梁上的PNIPAM分子在水中的构象转变所引起的微悬臂梁变形.实验结果显示:在升温过程中,微悬臂梁的表面应力发生了变化并且导致微悬臂梁产生了弯曲变形,这个过程对应着微悬臂梁上的PNIPAM分子从无规线团构象到塌缩小球构象的构象转变.在降温过程中,微悬臂梁发生了反方向的弯曲变形,这对应着PNIPAM分子从塌缩小球构象向无规线团构象的构象转变.整个温度变化过程中构象转变是连续进行的,而在低临界溶解温度(约32 ℃)附近转变幅度较大,这与自由水溶液中PNIPAM分子的无规线团-塌缩小球构象转变相对应.实验结果还显示:由于PNIPAM分子在塌缩过程中氢键的形成和链段间可能的缠结效应,整个温度循环过程中微悬臂梁的变形是不可逆的且有明显的迟滞效应.  相似文献   
10.
采用石墨电阻加热的温梯法生长了V:YAG晶体,晶体的不同部位呈现两种不同的颜色:浅绿色和黄褐色.通过对比分析不同颜色V:YAG晶体的室温吸收光谱,推断出石墨发热体高温下扩散出来的C可以起到还原作用,提高晶体中V3+tetra离子的浓度,同时诱导了F心的形成.在1300℃下,对不同颜色的V:YAG晶体进行真空退火处理,发现处于八面体格位中的V3+离子在热激发作用下与近邻的四面体格位Al3+离子存在置换反应,由此产生一定浓度的四面体格位V3+离子.同时,F心在退火过程中被完全消除,释放出来的自由电子被高价态的V离子俘获,可以进一步提高晶体中四面体格位V3+离子的浓度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号