首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48163篇
  免费   7181篇
  国内免费   24640篇
化学   49281篇
晶体学   1186篇
力学   2741篇
综合类   1476篇
数学   7573篇
物理学   17727篇
  2024年   407篇
  2023年   1466篇
  2022年   1916篇
  2021年   2138篇
  2020年   1782篇
  2019年   2030篇
  2018年   1342篇
  2017年   1992篇
  2016年   2287篇
  2015年   2429篇
  2014年   3732篇
  2013年   3800篇
  2012年   3951篇
  2011年   3855篇
  2010年   3659篇
  2009年   4111篇
  2008年   4576篇
  2007年   4279篇
  2006年   4488篇
  2005年   3985篇
  2004年   4050篇
  2003年   2752篇
  2002年   1852篇
  2001年   1664篇
  2000年   1493篇
  1999年   1520篇
  1998年   1154篇
  1997年   920篇
  1996年   814篇
  1995年   759篇
  1994年   711篇
  1993年   696篇
  1992年   773篇
  1991年   733篇
  1990年   545篇
  1989年   523篇
  1988年   328篇
  1987年   171篇
  1986年   96篇
  1985年   77篇
  1984年   50篇
  1983年   40篇
  1982年   22篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1959年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
GAP:Eu,Re(Gd1-x-yAlO3Eux,REy?A,RE=Pr or Ce) powders were prepared by a nitrate-citrate process. It is found that luminescent intensity decreases when GAP:Eu is co-doped with Pr or Ce. The phenomena of spectra prove that there is a resonant energy transfer between Eu and Pr, by the absorption and emission of lower-energy phonon, and also Ce sensitizer decreases the activator energy level from host→Eu. The two factors are considered to be the main reasons for decrease of the luminescent intensity for the co-doped GAP:Eu,Re.  相似文献   
72.
采用时域有限差分方法(FDTD)进行元件表面微结构电磁场分布的数值模拟;同时实验分析了化学湿法刻蚀对光学元件表面面形及粗糙度、激光损伤阈值等的影响。  相似文献   
73.
强冲击载荷下自由表面的粒子喷射现象还没有被清楚认识,很难从理论上给以准确的计算模型,因而从实验测定材料在冲击载荷下自由面面喷射物质的分布和粒子尺寸大小就显得非常重要。测量微粒场的脉冲激光同轴全息技术,具有在纳秒或更在短时间内“固化”运动微粒场、测量精度高、景深长、光路简单和获得的信息量大等优点。这些优势使得脉冲激光同轴全息技术成为研究微喷射场的重要测试手段之一。  相似文献   
74.
A G 4.0 dendrimer-like poly (amido amine) (PAMAM) based on silica nanoparticles was fabricated via a divergent approach.It was built from γ-aminopropyi silica nanoparfides (APSN) core via repetitive addition of acrylate (MA) and hexylenediamine (HDA). FT-IR and EA were used to monitor the progress of dendrimer during each step. The amino group content of the resulting product increased from 0.49 to 3.72 mmol/g after the 4th generation. In addition, the percentage of grafting increased with increasing generation and reached to 65.9% after 4th generation. It was found that the resulting silica nanoparticles could be dispersed in methanol with a mean hydrodynamic particle diameter of 152.7 nm although the silica nanoparticles had agglomerated during the storage period.  相似文献   
75.
串联双环光微谐振器的滤波特性   总被引:5,自引:2,他引:3  
杨建义  江晓清  王明华 《光学学报》2003,23(10):191-1195
详细研究了串联双环光微谐振器的光带通滤波特性,给出了其通带带宽的公式,分析了出/入环光耦合系数和环间光耦合系数对通带特性的影响,计算并特别强调了滤波通带的结构特点,也分析了微环中存在的光损耗对串联双环光微谐振器的滤波特性的影响。  相似文献   
76.
本文考察了包括平面上的各种广义 Cantor集 ,Sierpinski集和包括某些连续不可微曲线在内的广义 Sierpinski集 .由相似变换 ,导出了它们的级数表达式 ,并利用它和字符串空间的对应关系 ,计算出它们的Hausdorff维数  相似文献   
77.
束晕-混沌的复杂性理论与控制方法及其应用前景   总被引:18,自引:0,他引:18  
本文系统论述涉及强流加速器等强流离子束装置中产生的束晕-混沌的复杂性理论与控制方法及其应用前景。强流离子束在核材料生产与增殖、洁净核能、放射性废物嬗变、放射性药物生产、重离子聚变、高能物理、核科学与工程、国防与民用工业和医疗等许多方面都有极其重要的应用潜力和诱人的发展前景。尤其是,近年来强流加速器驱动的放射性洁净核能系统是国内外关注的热门课题,因为它比常规核电更安全、更干净、更便宜。但是,强流离子束形成的束晕-混沌的复杂性现象已引起了国内外广泛关注,需要加以抑制、控制和消除这类现象,解决这一难题已经成为强流离子束应用中的关键问题之一。目前不仅必须深入研究这类束晕-混沌的复杂特性及其产生的物理机制,而且需要研究如何实现对束晕-混沌的有效控制,并寻求和发展其新理论、新方法和新技术。这就向强流离子束物理和非线性-复杂性科学及其技术提出了一系列极富挑战性的新课题。本文结合国内外的研究概况,根据我们多年来的研究成果,特别是我们首创性地提出了一些束晕-混沌的有效控制方法,它们包括:非线性反馈控制法,小波反馈控制法,变结构控制法,延迟反馈控制法,参数自适应控制法等,进行重点的介绍。对上述课题当前的主要进展及相关问题进行系统的总结和比较全面综述的评论。最后,指出该领域今后的研究方向,以推动这个崭新领域的深入研究和应用发展。  相似文献   
78.
79.
利用分子的VolSurf参数预测化合物的水溶解度并阐明有利于水溶解度的主要分子结构特征.被测化合物包括185个共两大系列分子,使用偏最小二乘判别分析和多元线性回归方法在实验数据和分子特征之间建立相关性,均得到较好的结果.以70个化合物所建立的训练集模型对其余115个化合物有较好的预测能力.参数分析表明分子内较大的亲水区域对水溶解度有利;分子质心与疏水区、亲水区之间的不平衡性越高,水溶解度越大;分子量及体积大的分子对其水溶解度不利.  相似文献   
80.
选用了钛酸丁酯、硬脂酸和乙二醇作为表面活性剂,采用表面化学修饰和表面物理修饰2种方法修饰纳米氧化钛,然后分散在乙二醇溶剂中形成溶胶溶液.并通过红外光谱仪、紫外分光计、原子力显微镜,分析了表面化学修饰后的纳米氧化钛表面化学结构的变化,观测了纳米氧化钛溶胶在乙二醇溶剂中稳定性.试验结果表明表面活性剂与纳米氧化钛的表面的不饱和键之间形成了新的化学结构,粒子表面可能接枝上有机长链,提高了纳米粒子在溶剂中的相容性.表面化学修饰后的纳米氧化钛与乙二醇溶剂形成了较稳定的溶胶体系,而且纳米溶胶粒径较小.表面活性剂添加量与纳米粒子添加量控制在(1~1.2):1时,可以获得纳米溶胶粒径较小,同时溶胶稳定性较好的纳米氧化钛-乙二醇溶胶体系.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号