首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26943篇
  免费   3327篇
  国内免费   13536篇
化学   29917篇
晶体学   535篇
力学   1062篇
综合类   774篇
数学   3785篇
物理学   7733篇
  2024年   242篇
  2023年   978篇
  2022年   1147篇
  2021年   1236篇
  2020年   1079篇
  2019年   1223篇
  2018年   770篇
  2017年   1110篇
  2016年   1267篇
  2015年   1382篇
  2014年   2013篇
  2013年   2174篇
  2012年   2254篇
  2011年   2149篇
  2010年   2144篇
  2009年   2252篇
  2008年   2638篇
  2007年   2452篇
  2006年   2682篇
  2005年   2322篇
  2004年   2524篇
  2003年   1564篇
  2002年   726篇
  2001年   680篇
  2000年   673篇
  1999年   786篇
  1998年   435篇
  1997年   311篇
  1996年   250篇
  1995年   225篇
  1994年   226篇
  1993年   314篇
  1992年   358篇
  1991年   365篇
  1990年   250篇
  1989年   265篇
  1988年   184篇
  1987年   80篇
  1986年   33篇
  1985年   20篇
  1984年   10篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
代雨航  李剑  张莹  朱忠丽 《发光学报》2018,39(4):488-493
采用柠檬酸燃烧法制备Er,Yb:(LaLu)2O3陶瓷粉体,用X射线衍射对其进行了物相鉴定,研究表明1 000℃时已经得到纯相的(LaLu)2O3。采用冷等静压-真空烧结法制备了Er,Yb:(LaLu)2O3和Er:(LaLu)2O3陶瓷,对陶瓷的结构和光谱性能进行了详细的研究,研究发现掺杂5% Yb3+和10% La3+样品的上转换发光强度与未掺Yb3+、La3+样品相比明显增大,根据上转换光谱显示较强发射峰位于564 nm和661 nm处,对应Er3+4S3/22H11/2)→4I15/2能级跃迁和4F9/24I15/2能级跃迁,并讨论了Er3+-Yb3+的能量传递过程及其上转换发光机制。  相似文献   
982.
冲击波是一种高速瞬态的强烈非线性波动现象,在流体力学和材料力学、国防军工等领域有重要的学术意义和应用价值。冲击波在液体和固体介质中的清晰观测比较困难,但这种研究又不可或缺。该文采用高压电火花放电技术在水中产生厘米级的球形空泡,空泡膨胀后接着收缩崩塌,在极短时间和极小空间内释放出的能量在水中产生冲击波。结合纹影法和动态光弹法,使用高速摄像机和脉冲激光器组成的纹影-动态光弹法冲击波观测系统,可实现冲击波在液固介质中传播过程的高分辨率观测,为进一步研究冲击波的相关理论和应用技术提供了一种实验手段。  相似文献   
983.
陈坚  刘志强  郭恒  李和平  姜东君  周明胜 《物理学报》2018,67(18):182801-182801
离子引出过程是原子蒸气激光同位素分离中非常重要的物理过程之一,而其中关键的等离子体参数(等离子体初始密度和电子温度等)均会对离子引出特性产生影响.基于千赫兹电源驱动的氩气高压交流放电等离子体射流源,建立了离子引出模拟实验平台-2015 (IEX-2015),开发了用于诊断氩等离子体参数的"碰撞-辐射"模型,对等离子体射流区的电子温度和电子数密度等关键参数进行了测量.结果表明,电源输入功率和驱动频率以及工作气体流量均会对等离子体射流区的电子温度和数密度产生影响;在真空腔压强为10~(-2)Pa量级下,射流区电子数密度和电子温度的可调参数范围分别为10~9—10~(11)cm~(-3)和1.7—2.8 e V,这与实际离子引出过程中的等离子体参数范围相近.在此基础上,开展了不同引出电压、极板间距和电子数密度条件下初步的离子引出实验,所得到的离子引出电流变化规律亦与实际原子蒸气激光同位素分离中的离子引出特性定性一致.上述研究结果验证了在IEX-2015上开展离子引出模拟实验的可行性,为后续深入开展离子引出特性的实验研究准备了良好的条件.  相似文献   
984.
985.
利用正高压驱动空心针-板喷枪装置,通入工作气体氩气,在大气压空气中产生了均匀稳定的喇叭状等离子体羽。电学和光学测量结果表明,放电虽然是在直流电源驱动下工作,但放电为周期性的脉冲。通过对等离子体羽发光信号进行空间分辨测量,研究了脉冲的形成机理,发现除针尖附近的电晕放电外,等离子体羽是以正流光(等离子体子弹)从针尖向着接地电极方向传播的。采用光谱学方法,对电子激发温度随电压的变化及其空间分布进行了测量。结果表明,电子激发温度(约为3 eV)随电压的增大而升高,在一定电压下,电子激发温度沿气流方向也在升高。  相似文献   
986.
提出了一种基于光纤布拉格光栅嵌入单模-多模纤芯-单模(single-mode-multimode fiber core-single mode, SMS)光纤结构的湿度传感器。当环境湿度变化时,SMS光纤结构的干涉光谱会发生漂移,而光纤布拉格光栅对湿度不敏感,其纤芯基模保持不变。因此利用SMS光纤结构对环境湿度的敏感性去调制光纤布拉格光栅纤芯基模,通过检测光纤布拉格光栅纤芯基模的反射能量变化就可以实现湿度测量。数值模拟了SMS光纤结构的内部光场分布规律,理论计算了不同环境折射率时,多模纤芯的长度、直径对SMS光纤结构输出能量耦合系数的影响。理论模拟表明,随着环境折射率变化,SMS光纤结构中传输的纤芯基模的输出能量耦合系数会发生变化。同时制作了传感器样品并对其进行了传感实验研究,实验结果表明多模纤芯长35 mm、纤芯直径为85 μm的传感器在45%~95%RH湿度变化范围内,湿度灵敏度为0.06 dBm·(%RH)-1。在20~80 ℃温度范围内,传感器的温度灵敏度为0.008 nm·℃-1,温度所带来的湿度测量误差为0.047%RH·℃-1。传感器具有制作简单、灵敏度高、反射式能量检测等优点,在湿度测量领域有一定的应用价值。  相似文献   
987.
我们研究了一个基于单层氢化锑的异质结构材料的热电性质,该材料有着新颖的量子自旋-量子反常霍尔效应.我们计算了这种新的拓扑相材料的锯齿形结构纳米带的电导、热导、塞贝克系数以及热电效益指数.通过我们的研究,表明该材料在低温下有着较好的热电性能.此外,我们通过改变样品最外层原子的交换场的方式来调控样品的边缘态,并计算样品热电性质的变化.最后,我们发现随着纳米带宽度的增加,系统的热电性能也会增加.  相似文献   
988.
采用密度泛函理论(DFT)中的B3LYP方法对4-二甲基对巯基苯胺吸附在Ag簇上催化偶联生成4,4’-二巯基偶氮苯(4,4’-DMAB)的反应机理进行理论研究。对比研究了暗反应条件下和光照条件下4-二甲基对巯基苯胺吸附在Ag簇上发生催化偶联生成4,4’-二巯基偶氮苯(4,4’-DMAB)的反应机理。为了了解4-二甲基对巯基苯胺中的巯基端S原子吸附在银簇上对反应的影响,比较研究了4-二甲基对巯基苯胺中的N和S原子同时吸附和仅N原子吸附在银簇上两种条件下的化学反应机理。用自然键轨道(NBO)理论和分子中的原子理论(AIM)分析了分子轨道间相互作用和成键特征。研究结果发现:该反应的关键在于氨基端两个甲基的脱去;在暗反应和光照条件下,两端吸附时第二个甲基脱去所需活化能均很高,分别为57.95 、63.88 kcal/mol,表明光照在反应中没起到催化作用。暗反应条件下巯基端吸附起到助催化作用,反应为两端协同催化过程。光照条件下银簇两端协同催化过程表现得不明显。  相似文献   
989.
采用密度泛函B3LYP方法,在6-311++g(3df,3pd)基组水平上优化了不同外电场下2-氟-5-溴吡啶分子的基态稳定构型、电偶极矩和分子的总能量,在此基础上利用杂化CIS方法研究了外电场下2-氟-5-溴吡啶分子的前9个激发态的激发能、波长和振子强度受外电场的影响规律。结果表明:5C-9Br和3C-10F间键长受到X轴向外场影响最大,随着外电场的继续增加,可能最先趋于断裂;在外电场F=-0.005a.u.时总能量达到最大,而偶极矩达到最小;LUMO能级受外场影响较大,HOMO能级受外电场影响较小;激发波长、振子强度也受外电场影响,但随电场变化比较复杂。  相似文献   
990.
冰晶石-氧化铝熔盐的分子动力学研究   总被引:1,自引:0,他引:1  
采用分子动力学方法,对冰晶石-氧化铝熔盐的结构及其电学性质进行了研究.通过对不同氧化铝含量熔盐的计算,证明文章采用的势函数参数,可以获得与实验相近的平均键长以及相同变化规律的密度.证实了Al-F-Al和Al-O-Al桥接络合离子的存在,由于这些络合离子的存在,阻碍了铝离子的自由运动,使得在铝离子电场作用下被带到阳极,降低了电解效率.同时离子淌度的计算显示钠离子是电场作用下导电的主要载流子.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号