首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   99篇
  国内免费   539篇
化学   696篇
晶体学   36篇
力学   77篇
综合类   24篇
数学   310篇
物理学   301篇
  2024年   7篇
  2023年   26篇
  2022年   28篇
  2021年   22篇
  2020年   8篇
  2019年   22篇
  2018年   18篇
  2017年   18篇
  2016年   24篇
  2015年   30篇
  2014年   40篇
  2013年   33篇
  2012年   48篇
  2011年   44篇
  2010年   50篇
  2009年   50篇
  2008年   95篇
  2007年   62篇
  2006年   55篇
  2005年   60篇
  2004年   72篇
  2003年   57篇
  2002年   70篇
  2001年   61篇
  2000年   71篇
  1999年   76篇
  1998年   64篇
  1997年   45篇
  1996年   42篇
  1995年   30篇
  1994年   25篇
  1993年   13篇
  1992年   24篇
  1991年   15篇
  1990年   14篇
  1989年   13篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1444条查询结果,搜索用时 15 毫秒
151.
以L-组氨酸和十二烷基苯磺酸钠(SDBS)作为CaCO3生长调节剂,用粉末X射线衍射、红外光谱测试技术对生成的CaCO3晶体进行了表征,扫描电子显微镜对生成的CaCO3晶体形貌进行了分析,研究了表面活性剂浓度、温度和溶剂的组成对CaCO3晶型和形状的影响。结果表明,在实验条件下表面活性剂的浓度对CaCO3晶型没有影响,但影响晶体的形状,温度和溶剂的组成对CaCO3晶型和晶体形状有很大的影响。  相似文献   
152.
鸟嘌呤四链体中Na~+的移动   总被引:1,自引:0,他引:1  
Na+-G-四链体复合物是一个明显的极化体系,其形成或解离过程中,Na+的移动路线目前还不十分明确.σπ水平的原子-键电负性均衡方法融合进分子力学(ABEEMσπ/MM)模型除原子位点外,还明确地定义了孤对电子、σ键和π键的位置,并且各位点电荷随分子环境改变而浮动,因此能更好地反映该体系的极化现象.本文应用ABEEMσπ/MM方法研究了Na+-G-四平面复合物的性质,包括它的几何构型、电荷分布和结合能等,并在MP2/6-31G(d,p)水平上做了相应的从头算,两种结果十分吻合.Na+的存在改变了G-tetrad的氢键方式.通过比较Na+各条移动路线中体系的结合能,预测G-四链体中三个Na+最有可能沿α方向依次移出.以上研究为进一步应用ABEEMσπ/MM模型进行G-四链体中离子交换通道的动力学模拟打下坚实的基础.  相似文献   
153.
<正>CaCO3主要有三种晶型:方解石,文石和球霰石[1-3],方解石是CaCO3晶体最稳定的晶型,球霰石是最不稳定的,文石的稳定性介于两者之间。在生物矿物中经常发现有文石和方解石的存在,具有结构功能和光学等性能[4],是生物体硬组织中的主要无机成份之一。在珍珠、贝壳、甲壳、动物骨骼等生物组织中CaCO3与少量有机基质(生物大分子)结合,形成具有特定性质的有机/无机杂化材料[5],例如,方解石存在于骨头,牙齿等硬组织中,另外还具有在神经束中的光聚焦功能;  相似文献   
154.
应用规范不变原子轨道法(GIAO)在RHF/6-31G**和B3LYP/6-31G**水平上计算了质子化双氮桥联1,10-菲咯啉大环化合物(H4HAPP2+)C2h和C2h构型的1HNMR,并用TDDFT法计算了H4HAPP2+电子光谱.结果表明,B3LYP/6-31G*优化的C2h构型为较优构型,经谐振频率验证无虚频,C2h构型是H4HAPP2+合理的对称性构型.  相似文献   
155.
合成形态、大小及结构可人为调控的无机材料是现代材料科学的重要研究方向[1]. 借助于各类有机添加剂及模板剂的调控作用, 可利用溶液合成方法制备出形貌与结构受到有效调控的无机粒子[2,3]. 室温固态化学反应已被成功地应用于多种无机纳米粒子[4]及纳米线[5]的合成, 并显示出高效、节能、无污染和操作简便等优点, 因而在材料合成领域具有应用前景[6].  相似文献   
156.
在醋酸/水体系的工业分离中,溶液中的氢键对分离效率有很大影响.本文采用两种第一性原理方法,即从头算分子动力学模拟(AIMD)和量子化学计算(QCC),对由单个醋酸和不同水分子所组成聚合体的氢键相互作用进行了研究,采用极化统一模型和自洽反应场模型计算得到了聚合体在水溶液中的热力学数据.从QCC计算的气相和水溶液中的聚合自由能表明六元环在两种状态下都为最优结构,热力学数据反映出的各种结构的相对稳定性与AIMD模拟的环分布符合得相当一致.研究表明,由于存在醋酸和水分子间的氢键作用,稀醋酸/水溶液中的醋酸分离要比在浓醋酸溶液中困难得多.  相似文献   
157.
用从头算和密度泛函理论研究了对硝基二苯乙烯作为生色团连接的2-(2-羟基-苯基)-苯骈三氮唑的衍生物2-羟基-5-[对硝基-二苯乙烯基-氧亚甲基]-苯基-(2H-苯骈三氮唑)(C1)和4′-硝基-3,4-二[2-羟基-(2H-苯骈三氮唑)-苄氧基]-二苯乙烯(C2)发生激发态分子内质子转移(ESIPT)的可能性.系统研究了C1和C2发生ESIPT的互变异构体的基态与激发态的性质变化,包括相关的键长、键角等结构参数,Mulliken电荷和偶极矩,前线轨道以及势能曲线.计算结果表明,对于C1来讲,酮式(keto)的基态(K)不存在稳定结构,因此发生基态分子内质子转移(GSIPT)可能性很小.酮式的激发态(K*)的氢键强度要远强于烯醇式(enol)的激发态(E*)的氢键强度.分子在光致激发后,质子供体所带负电荷减小而质子受体所带负电荷增加.在K*,HOMO→LUMO的电子跃迁导致电子密度从"酚环"向质子化杂环转移.E*→K*跃迁只需要克服较小的能垒(约41 kJ.mol-1).计算结果表明C1发生ESIPT的可能性很大.C2由于具有高能量,其具有基态的单质子转移特征的异构体EK(同时含烯醇E与酮K结构)、具有基态的双质子转移特征的异构体2K(含有双酮结构),以及具有双酮结构特征的激发态2K*均无法获得它们的稳定结构,因此,基态分子内单或双质子转移和激发态分子内双重质子转移发生的可能性极小.然而,由于双烯醇式的激发态(2E*)和EK的激发态(EK*)存在稳定结构,且2E*→EK*跃迁具有低能垒,因此C2有可能发生激发态分子内单重质子转移.本文进一步计算了两个分子的紫外-可见吸收光谱与荧光发射光谱,获得了具有较大斯托克位移的ESIPT的荧光发射峰.  相似文献   
158.
利用双水平直接动力学方法对反应CH3SH+H的微观机理和动力学性质进行了理论研究.对于此反应的三个反应通道,即—SH和—CH3基团上的两个氢提取通道及一个取代通道,在MP2/6-311+G(d,p)水平上优化得到了各稳定点的结构及振动频率,并在G3(MP2)水平上进行了单点能量计算以获得更精确的能量信息;在此基础上运用结合小曲率隧道效应校正的变分过渡态理论(CVT/SCT)计算了各反应通道在220-1000 K温度区间的速率常数.计算结果表明提取—SH基团上H的反应通道R1在整个反应温度区间都是主要通道,而随着温度的升高,低温下的次要反应通道——取代通道R3变得越来越重要,并且在高温下将成为一个竞争的反应通道;提取—CH3基团上H的反应通道(R2)由于具有较高的反应能垒,因而,其对总反应速率常数的贡献可以忽略.计算得到的总反应速率常数与已有的实验值符合得很好,进而我们预测了该反应在220-1000 K温度范围内速率常数的表达式为:k=5.00×10-18T2.39exp(-119.81/T),为将来的实验研究提供参考.  相似文献   
159.
以CaCl2和Na2CO3为原料, 研究CaCO3在聚己内酯-b-聚丙烯酸(PCL-b-PAA)胶束溶液中的结晶行为, 并探讨胶束溶液浓度对CaCO3晶体组成及其形貌的影响. 采用氢核磁共振谱(1H NMR)、透射电子显微镜(TEM), 傅里叶变换红外吸收光谱(FTIR)、X射线粉末衍射分析(XRD)、扫描电子显微镜(SEM)和电导率等测试手段对聚合物结构、胶束形貌和CaCO3晶型及形貌进行表征. 结果表明, PCL-b-PAA胶束影响了CaCO3的结晶过程, 得到了不易在水中存在的处于亚稳态的球霰石型CaCO3晶体. 随胶束浓度的增加, 球霰石型CaCO3的含量先增加而后减少|CaCO3晶体的主要形貌由无规则形转变为球形.  相似文献   
160.
合成了温敏性的聚(N-异丙基丙烯酰胺)-b-聚(L-谷氨酸)(PNIPAM-b-PLGA)嵌段共聚物,在较高温度下制备了以PNIPAM为核、以PLGA为壳的自组装胶束,研究了胶束对碳酸钙晶体生长的控制作用.使用扫描电镜和X射线衍射表征了碳酸钙晶体的形貌和晶型.当聚合物胶束浓度较高时,得到纤维状的文石;当胶束浓度较低时,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号