首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   420篇
  国内免费   1006篇
化学   1595篇
晶体学   122篇
力学   60篇
综合类   13篇
数学   1篇
物理学   626篇
  2024年   42篇
  2023年   83篇
  2022年   178篇
  2021年   153篇
  2020年   155篇
  2019年   203篇
  2018年   149篇
  2017年   214篇
  2016年   196篇
  2015年   194篇
  2014年   268篇
  2013年   236篇
  2012年   158篇
  2011年   72篇
  2010年   18篇
  2009年   12篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   12篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
排序方式: 共有2417条查询结果,搜索用时 15 毫秒
101.
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2 eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.首先,采用改进的Hummers方法制备了氧化石墨烯纳米片;然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构;在pH值为6时,样品为不规则球体;当pH值为8时,纳米片结构开始出现;但当p H=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当p H值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72 m^2g^-1,平均孔径为31.08nm,Sb2S3@RGO的分别为44.53 m^2g^-1和22.65 nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).  相似文献   
102.
光电催化(PEC)氧化法是一种使用半导体电极材料在光和电的共同作用下处理水中有机污染的有效方法.在PEC工艺中,施加偏压不仅可以利用电催化对有机污染物进行降解,而且在偏压作用下,光生电子-空穴对能够得到有效的分离和传输,从而大大提高了机物污染物的去除速率.尽管PEC技术已经取得了许多重要的突破,但是能量转换效率仍然无法满足实际应用.因此,开发具有优异性能,良好稳定性和低成本的光电极材料是一项具有挑战性的研究工作.本文采用两步电沉积法制备了BiPO4纳米棒/还原氧化石墨烯/FTO复合光电极(BiPO4/r GO/FTO).电镜结果表明,电沉积制得的纳米棒状磷酸铋均匀负载在石墨烯纳米片层表面.采用甲基橙为模型体系,考察了复合光电极的光电催化活性.BiPO4/r GO/FTO复合电极的光电催化降解速率是BiPO4/FTO光电极的2.8倍,显示出优良的光电催化活性.实验进一步研究了工作电压和BiPO4沉积时间对甲基橙光电降解性能的影响.最佳的BiPO4沉积时间为45 min,最佳工作电压为1.2 V.捕获实验和ESR实验表明羟基自由基(·OH)和超氧化物自由基(·O2-)是该电极的主要活性物种.BiPO4/r GO/FTO复合电极经过四次循环实验后其降解甲基橙效率保持不变,显示出高稳定性,采用光电流,交流阻抗及其荧光测试对其光催化机理进行推测.结果表明该复合光电极具有高PEC活性的主要原因是:石墨烯的引入加快了BiPO4的电子空穴的分离,拓宽了石墨烯的可见光吸收范围;同时,石墨烯诱导产生的BiPO4混合相也进一步促进了光生电子空穴的分离,提高了光电降解活性.  相似文献   
103.
通过在石墨烯中引入内消旋-2,3-二巯基琥珀酸(DMSA)构建三维立体结构,原位合成了CdS@DMSA-GO复合材料。实验表明,反应温度对所得材料的结构和性能具有重要的影响。CdS@DMSA-GO-100℃对罗丹明B和刚果红具有最佳的吸附和光催化降解性能,降解效率可达96%以上。自由基捕获实验表明,·O2在催化过程中是主要的活性氧物质。  相似文献   
104.
利用纳米压痕和纳米划痕试验表征了仿生叠层构型铝基石墨烯复合材料(Bio-inspired laminated graphene reinforced aluminum martrix composite, BAMC)与纯铝的力学性能和摩擦磨损性能. 鉴于摩擦力由黏着作用和犁沟作用两分量共同组成,对比探究了BAMC与纯铝在微观摩擦磨损过程中的弹塑性转变过程,分析了黏着作用与犁沟作用在摩擦力中的贡献度,揭示了其微观摩擦磨损机制. 结果表明:相较于纯铝,BAMC的纳米硬度提高了约24%,总摩擦系数(Friction coefficient)降低了约28%,黏着作用分量和犁沟作用分量分别降低了32%和16%. 换言之,复合材料中的异质界面产生异质变形诱导强化,进而增强了应变硬化,使仿生叠层石墨烯铝基复合材料的硬度得到明显提升,并且仿生叠层构型的石墨烯主要通过降低黏着作用来实现减磨. 从微纳米尺度揭示了BAMC的力学性能和摩擦磨损性能显著提升的机理,可为提升其摩擦磨损性能提供理论依据. 目前的工作通过纳米划痕和纳米压痕强调了叠层结构石墨烯的添加对块体复合材料的摩擦性能的影响,并表明仿生叠层构型铝基石墨烯是搭建仿生叠层结构的小尺寸理想增强体.   相似文献   
105.
采用球磨的方法实现了在钢球表面制备大面积连续的石墨烯薄膜,考察其随球磨时间变化,石墨烯薄膜在钢球表面的包裹程度、形貌变化、结构演变过程、结合性能及摩擦学性能. 研究表明:随着球磨时间的增加,石墨烯在钢球表面团聚减少,包裹更加均一,结构趋于有序;当球磨时间达到50 h时,在钢球表面形成分布均匀且大面积连续的石墨烯薄膜,使与含氢类金刚石碳薄膜组成配伍的平均摩擦系数从裸钢球的0.043降至0.022,磨痕深度和宽度都显著降低. 经胶带粘取100次或乙醇中超声清洗30 min后球磨制备石墨烯薄膜仍然粘附于钢球表面,在氩气环境下石墨烯薄膜表现出优于钢球的摩擦磨损性能.   相似文献   
106.
通过第一性原理计算研究了钨/石墨烯/钨复合材料相比于纯钨金属在力学与热学性质方面的变化,并用氦原子-空位缔合缺陷模拟核聚变辐照损伤评估等离子体辐照条件下的性能。计算结果表明:钨/石墨烯/钨复合材料的体积弹性模量、杨氏模量与剪切模量呈现一定程度的下降,但是提升了钨基材料的延展性;钨/石墨烯/钨复合材料的热膨胀系数有所增加,但是具有较高的最小热导率。本文阐述了石墨烯界面层可以对基体杂质与缺陷进行吸附的独特机制,通过这种机制,钨/石墨烯/钨复合材料在力学、热膨胀系数以及最小热导率有更低程度的衰减,这显示了钨/石墨烯/钨复合材料在抗辐照性能方面具有较大的应用潜力。  相似文献   
107.
摘 要:基于第一性原理的计算方法,建立了本征石墨烯、空位石墨烯及钇( Y)掺杂空位石墨烯模型,并计算了CO、NO在三类石墨烯表面的吸附过程. 从表面能、吸附结构、吸附能和态密度四个方面进行分析讨论,研究掺杂Y对CO、NO气体吸附性能的影响. 结果表明:CO、NO与本征石墨烯之间的吸附为弱的物理吸附,掺杂Y后增强了材料表面对CO、NO的吸附效果,最大吸附能分别为7.414eV、6.702eV,属于化学吸附;掺杂Y使空位石墨烯费米能级附近有了更多的活跃电子,其吸附NO后体系由半金属转变为金属特性,该特性能为开发更加优良的石墨烯气敏材料提供理论支持.  相似文献   
108.
摩擦磨损是导致机械系统高能耗和失效的主要原因,降低摩擦系数、减小磨损,特别是实现超滑(超低摩擦,μ<0.01)是解决上述困窘的有效方法.本文针对在工程尺度难以实现超滑应用的技术壁垒,将催化与摩擦学相结合,提出了金催化非晶含氢碳薄膜原位生成石墨烯纳米带实现工程超滑的新方法,即"催化超滑".本文采用等离子体化学气相沉积法(...  相似文献   
109.
DNA是构建纳米技术和生物传感技术新设备的良好构建体.DNA生物传感器由于具有灵敏度高、选择性好等特点,近年来获得了飞速发展.研究发现,金属纳米粒子(MNPs)、碳基纳米材料等一系列纳米材料在传感器设计中提高了电化学DNA传感器的传感性能.本文侧重介绍了场效应晶体管、石墨烯、碳纳米管等新型纳米传感材料,以及基于这些材料...  相似文献   
110.
《离子交换与吸附》2021,37(2):126-142
在常压下制备了L-半胱氨酸功能化三维石墨烯(L-3DRGO),研究了L-3DRGO对MB分子的吸附机理。氧化石墨烯(GO)在常压水浴中与L-半胱氨酸(L-cys)反应后,结构中的含氧官能团被大量去除,L-cys被氧化为胱氨酸,实现了GO的还原和接枝改性,并通过酰胺反应将还原后的GO片-片相连,构建成三维网络结构。L-3DRGO对MB的吸附符合Langmuir等温吸附模型,为单层吸附,通过Langmuir等温吸附模型计算得到的相关系数(RL)在0~1之间,增大MB初始浓度可以有效克服固液两相之间的传质阻力,有利于吸附的进行。拟二级动力学模型能更好地描述MB在L-3DRGO上的吸附,当MB的初始浓度为500mg/L时,L-3DRGO对MB的最大吸附量为446.43mg/g。吸附过程的焓变与熵变均为正值,说明L-3DRGO对MB的吸附是一个吸热和熵增的过程。在298~338K范围内,ΔG~0为负值并随温度的升高而减小,说明MB在L-3DRGO上的吸附可自发进行,适当升温利于吸附过程。整个吸附过程均伴随有液膜扩散和颗粒内扩散,吸附速度的主控步骤由液膜扩散转化为颗粒内扩散。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号