首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   30篇
  国内免费   96篇
化学   109篇
晶体学   4篇
力学   4篇
综合类   2篇
物理学   99篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   11篇
  2009年   12篇
  2008年   17篇
  2007年   25篇
  2006年   19篇
  2005年   17篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
排序方式: 共有218条查询结果,搜索用时 0 毫秒
11.
本文用精密自动绝热量热仪测定了2-甲基-2-丁醇在80~305 K温区的热容,从热容曲线(Cp-T) 发现三个固-固相变和一个固-液相变, 其相变温度分别为T = 146.355, 149.929, 214.395, 262.706 K。从实验热容数据用最小二乘法得到以下四个温区的热容拟合方程。在80~140K温区, Cp,m = 39.208 + 8.0724X - 1.9583X2 + 10.06X3 + 1.799X4 - 7.2778X5 + 1.4919X6, 折合温度X = (T –110) / 30; 在 155 ~ 210 K温区, Cp,m = 70.701 + 10.631X + 12.767X2 + 0.3583X3 - 22.272X4 - 0.417X5 + 12.055X6, X = (T –182.5) /27.5; 在220 ~ 250 K温区, Cp,m = 99.176 + 7.7199X - 26.138X2 + 28.949X3 + 0.7599X4 - 25.823X5 + 21.131X6, X = (T – 235)/15; 在 270~305 K温区, Cp,m =121.73 + 16.53 X- 1.0732X2 - 34.937X3 - 19.865X4 + 24.324X5 + 18.544X6, X = (T –287.5)/17.5。从实验热容计算出相变焓分别为0.9392, 1.541, 0.6646, 2.239 kJ×mol-1; 相变熵分别为6.417, 10.28, 3.100, 8.527 J×K-1×mol-1。根据热力学函数关系式计算出80~305 K温区每隔5 K的热力学函数值 [HT –H298.15]和 [ST –S298.15]。  相似文献   
12.
以高氯酸钐和缬氨酸为原料在蒸馏水中合成了一种稀土高氯酸盐-缬氨酸配合物[Sm2(L-α-Val)4(H2O)8](ClO4)6.利用TC/DTG、化学和元素分析、FTIR等技术表征了配合物的结构,确定其组成为:[Sm2(L-αVal)4(H2O)8](ClO4)6.用精密绝热量热仪测量了它在78~371 K 温区的热容,用最小二乘法将该温区的热容对温度进行拟合,得到了热容随温度变化的多项式方程.用此方程进行数值积分,得到每隔5 K的舒平热容值和相对于298.15 K的热力学函数值.根据TG/DTG结果,推测了该配合物的热分解机理.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测量量热反应的反应物和产物在所选溶剂中的溶解焓,从而确定反应的反应焓为:△rHθm=(24.83:±0.85)kJ·mol-1.最后,利用反应的反应焓和其它反应物和产物已知的热力学数据计算出配合物的标准摩尔生成焓为:-(8010.01±3.90)kJ·mol-1.  相似文献   
13.
文章合成了Lu(NO3)3(C2H5O2N)4.H2O,用红外和元素分析对其进行了表征。用高精度全自动绝热量热仪,测定了该配合物80-382 K温区的热容, 利用实验热容数据, 根据热容与焓、熵的热力学关系, 求出了配合物85-350 K温区内每隔5 K相对于298.15K的标准热力学函数(HT - H298.15)m和(ST - S298.15)m.在80-350 K温度区间内,配合物的热容随温度升高而增大,没有相转移点和热力学吸收峰的出现,该配合物在此温度区间内是稳定存在的。  相似文献   
14.
采用综合物性测量系统(PPMS)的热容测量模块在1.9-300 K温度区间内对两种药物中间体(尿嘧啶和5-溴尿嘧啶)的低温热容进行了测量与研究. 结果表明, 在测量温区内两种化合物的低温热容随温度的上升而逐步增加, 无任何热异常现象产生; 在相同温度下, 5-溴尿嘧啶的热容数值始终高于尿嘧啶. 利用低温热容理论模型对热容数据进行了拟合, 并计算得到了0-300 K温区的摩尔熵变、焓变等热力学函数. 此外, 通过热容拟合数据计算得到的尿嘧啶和5-溴尿嘧啶在298.15 K的标准摩尔规定熵分别为(132.48±1.32)和(165.39±1.65) J·K-1·mol-1.  相似文献   
15.
采用Setaram BT 2.15微量热仪测定了Li2B4O7-H2O体系(Li2B4O7的浓度为0.00415~0.4208 mol/kg)在298.15, 308.15和323.15 K下的热容, 分别计算了不同温度和浓度下的表观摩尔热容, 并获得了不同温度下表观摩尔热容与浓度的关系式. 基于Li2B4O7-H2O体系的热容测定结果, 应用Pitzer电解质溶液离子相互作用表观摩尔热容模型, 拟合获得了四硼酸锂在不同温度下的Pitzer单盐参数.  相似文献   
16.
Mo纳米薄膜热力学性质的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
贾明  赖延清  田忠良  刘业翔 《物理学报》2009,58(2):1139-1148
采用改进嵌入原子法(MAEAM),通过经典的分子动力学(MD)模拟计算了高熔点过渡金属体心立方(bcc) Mo块体Gibbs自由能和表面能. 对于纳米薄膜的热力学数据,比如Gibbs自由能等,可以看成是薄膜内部原子和表面原子两部分数据之和,然后根据薄膜的体表原子之比就可以直接计算出总的自由能,并由此可以得到热力学性质与薄膜尺寸及温度的定量关系式. 分别计算了bcc Mo块体及其纳米尺寸薄膜的自由能和热容,结果表明,Mo纳米薄膜的热力学性质具有尺寸效应,并且在薄膜尺寸小于15—20nm时,这种效应变得非常明 关键词: 改进嵌入原子法 Mo纳米薄膜 表面自由能 热容  相似文献   
17.
利用精密自动绝热热量计直接测定了配合物Zn(Phe)(NO3)2·H2O(s) (Phe:苯丙氨酸)在78-370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为, T0=(324.27±0.37) K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp, m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 mL浓度为2 mol·L-1 的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测定混合物{ZnSO4·7H2O(s)+2NaNO3(s)+L-Phe(s)}和{Zn(Phe)(NO3)2·H2O(s)+Na2SO4(s)}的溶解焓为, ⊿dH0m,1 =(69.42±0.05) kJ·mol-1, ⊿dH0 m,2 =(48.14±0.04) kJ·mol-1, 进而计算出该配合物的标准摩尔生成焓为, ⊿fH0m =-(1363.10±3.52) kJ·mol-1. 另外, 利用紫外-可见(UV-Vis)光谱和折光指数(refractiveindex)的测量结果检验了所设计的热化学循环的可靠性.  相似文献   
18.
选择分析纯邻苯二甲酸和浓氨水为反应物,合成了邻苯二甲酸氢铵.利用元素分析、FTIR和X-射线粉末衍射技术表征了它的组成和结构.用精密自动绝热热量计测定了它在78~400 K温区的摩尔热容,将该温区的摩尔热容实验值用最小二乘法拟合,得到摩尔热容(Cp,m)随折合温度(X)变化的多项式方程,利用此方程计算出该温区内每隔5 K的舒平热容值和相对于298.15K的各种热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测定所设计反应的反应物和产物在所选溶剂中的溶解焓,得到该反应的反应焓为△rHθm=(1.787±0.514)kJ·mol-1.最后,利用此反应焓和反应中其他物质的热力学数据计算出邻苯二甲酸氢铵的标准摩尔生成焓为:△fHθm[NH4(C8H5O4),s]=-(912.953±0.628)kJ·mol-1.  相似文献   
19.
本文从热传导离散物理模型上论证了集中质量热容矩阵模型可以在离散点上满足热量守恒定律,采用它就可以避免许多热传导时间积分中的不合理现象。几个算例表明了该模型具有良好的精度。  相似文献   
20.
合成了四氯合镉酸正十一烷铵配合物(C11H23NH3)2CdCl4(s)[简写: C11Cd(s)]. 用X 射线单晶衍射技术、化学分析和元素分析确定其晶体结构和化学组成. 利用其晶体学数据计算出晶格能为: UPOT=908.18 kJ·mol-1. 利用精密自动绝热热量计测定了它在78~395 K 温区的低温热容, 结果表明, 该配合物在此温区出现两次连续的固-固相转变, 计算出两次相变的峰温、摩尔焓及摩尔熵分别为: Ttrs,1=(321.88±0.07) K, ΔtrsHm,1=(37.59±0.17) kJ·mol-1, ΔtrsSm,1=(117.24±0.12) J·K-1·mol-1, Ttrs,2=(323.81±0.30) K, ΔtrsHm,2=(12.42±0.02) kJ·mol-1ΔtrsSm,2=(38.36±0.09) J·K-1·mol-1. 用最小二乘法将实验摩尔热容对温度进行拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分,得到此温区每隔5 K 的舒平热容值和相对于298.15 K 时的热力学函数值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号