首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  国内免费   65篇
化学   103篇
综合类   2篇
物理学   6篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   6篇
  2012年   5篇
  2010年   9篇
  2009年   8篇
  2008年   9篇
  2007年   12篇
  2006年   3篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1995年   2篇
排序方式: 共有111条查询结果,搜索用时 62 毫秒
11.
以4,4'-二甲基丙烯酰氨基偶氮苯(BMAAB)为偶氮交联剂,制备了可酶降解的N-异丙基丙烯酰胺(NIPAAm)-丙烯酸(AA)共聚物水凝胶. 结果表明,研究的凝胶均表现出在4 ℃和37 ℃之间的溶胀相转变. 以牛血清白蛋白(BSA)为模型药物,在pH=7.4的缓冲溶液中对BSA进行了负载. 结果表明,凝胶在4 ℃时对BSA的负载量为144.5 mg(BSA)/g(gel),37 ℃为14.8 mg(BSA)/g(gel). 凝胶在pH=7.4的缓冲溶液中,在结肠菌作用下能发生酶降解,药物累积释放量4 d可达100 mg(BSA)/g干胶.  相似文献   
12.
以N-异丙基丙烯酰胺(NIPAAm)为单体, 二苯甲酮(BP)为光敏剂, 过硫酸胺(APS)为自由基引发剂, 采用溶液中光接枝方法制备了具有温度敏感特性的聚氨酯微球(PUS). 傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)结果表明, 在聚氨酯微球表面形成了聚异丙基丙烯酰胺(PNIPAAm)接枝聚合物层. 在接枝过程中, 延长反应时间与增加引发剂浓度均有利于提高接枝率. 常温下, 接枝率随反应时间延长呈线性增长, 当反应时间超过40 min后, 接枝率基本保持稳定; 而引发剂浓度对接枝率的影响存在最佳优化值, 即其浓度为单体质量分数的3%. 采用差示扫描量热法(DSC)对接枝改性前后聚氨酯微球的温敏特性进行分析表征, 证实改性后的微球在35 ℃左右出现低临界互溶温度(LCST), 在此温度附近表现出对温度敏感特性. 接触角测试与溶胀测试结果表明, 在低临界互熔温度以下, 接枝改性的聚氨酯微球具有良好的亲水性.  相似文献   
13.
在合成具备一定分子结构的聚(N-异丙基丙烯酰胺)-聚乳酸(PNIPAAm-PLA)嵌段共聚物的基础上,采用透析法制备了PNIPAAm-PLA共聚物磁性复合胶束和囊泡。本文发现不同的制备工艺条件会分别形成胶束和囊泡两种载体形态,并对两种载体的形貌进行了细致对比,发现两种结构特点的载体分别适合疏水性和亲水性药物的装载。对复合胶束的最低临界溶解温度(LCST)进行了表征研究,得到其LCST在38℃左右,略高于人体体温。对不同Fe4O3磁性粒子投料比对应制备的复合胶束的磁性能进行了较详细的测试,发现磁性粒子的加入量对其磁响应性影响不大。  相似文献   
14.
利用半互穿网络方法将具有温度响应的高分子聚N-异丙基丙烯酰胺( PNIPAM)与天然纤维素复合得到温敏性水凝胶。通过固体核磁共振的1 H,13 C CP/MAS(交叉极化/魔角旋转)和QCP(定量交叉极化)等实验手段对复合凝胶的结构进行了定性及定量研究,并利用固体静态变温核磁共振实验和偶极滤波-自旋扩散实验研究了复合凝胶中PNIPAM分子链段的动力学行为。  相似文献   
15.
温敏性聚合物能通过感知温度而实现环境响应,作为药剂可依靠对此类信号的自反馈响应而释放药物或中止释放,极大地增强了释药的持续性和专一性,从而提高了药物的药效和安全性.温敏性聚膦腈是一类新型的温敏材料,它具有良好的生物可降解性质,优良的生物相容性.因此,温敏性聚膦腈作为药物载体用于药物释放体系具有很好的应用前景,近年来备受关注.本文对聚膦腈的温敏性质、生物降解性质进行了评述,并探讨了LCST的影响因素,以及在药物释放体系的应用进展.  相似文献   
16.
以N,N-二甲基丙烯酰胺(DMAA)及甲基丙烯酸甲酯(MMA)为单体,Irgacure 2959为光引发剂,N,N′-二甲基双丙烯酰胺(Bis)为交联剂,利用紫外光引发自由基聚合制备了聚N,N′-二甲基丙烯酰胺(PDMAA)及P(DMAA-co-MMA)水凝胶,并通过加入少量表面改性后的纳米SiO2对该水凝胶进行改性,制得了P(DMAA-co-MMA)/纳米SiO2复合水凝胶,用FT-IR和SEM对产物进行了表征,同时研究该复合凝胶的溶胀动力学、消溶胀动力学、pH值响应性、离子强度等.该方法简便、快捷,大大缩短了聚合时间,合成过程仅需2-3 min.  相似文献   
17.
合成了含金刚烷基的甲基丙烯酸金刚烷酯(AdMA)疏水单体,并通过与N-异丙基丙烯酰胺(NIPAM)共聚,制备了温敏性的(P(NIPAM-co-AdMA))共聚物水凝胶.用傅里叶变换红外光谱仪(FTIR)表征了凝胶的化学结构,用环境扫描电镜(ESEM)对凝胶断层结构的形貌进行了观察,用DSC测试了凝胶的体积相转变温度(LCST),并研究了共聚水凝胶的溶胀性能.结果表明,共聚物水凝胶的LCST能够高效地通过改变疏水单体的含量来调节,在实验所考察的范围内,LCST随AdMA含量的增加而线性降低;疏水单体的含量对凝胶的孔洞结构和溶胀性能存在一最优值,在最优的单体配比下,水凝胶具有均匀规整的大孔结构和超快的响应速率.如疏水单体含量为3%(AdMA∶NIPAM=3%)的共聚物水凝胶具有如渔网般均匀的多孔结构,当发生去溶胀时,在5min内就可以失去92%的水,不到10min的时间就可以完全达到去溶胀平衡,水保留率在4%以下.  相似文献   
18.
采用改性琼脂糖对超大孔聚苯乙烯微球进行亲水化修饰(Agap-PS),通过酰基化反应在微球表面引入溴乙酰基(Agap-PS-Br),然后利用原子转移自由基聚合(ATRP)反应在Agap-PS-Br表面接枝温敏聚合物刷,得到一种温敏型超大孔生物分离介质(Agap-PS-PNIPAM).考察了配体、催化剂、溶剂和温度对N-异丙基丙烯酰胺ATRP反应的影响,在优化条件下PNIPAM的接枝量达到了15.07 mg/m2.采用红外光谱(FTIR)、扫描电镜(SEM)、压汞分析、激光共聚焦和蛋白吸附等手段对温敏型超大孔生物分离介质进行一系列表征,结果表明接枝温敏聚合物刷后Agap-PS-PNIPAM具有良好的温敏性,没有堵塞微球的超大孔,微球对蛋白的非特异性吸附大大降低.由于温敏聚合物刷发生了从亲水到疏水构象的转变,40℃时Agap-PS-PNIPAM对蛋白的吸附量是25℃时的2.69倍.压力流速实验表明Agap-PS-PNIPAM柱具有背压低、渗透性和机械稳定性好的优点,同样地由于PNIPAM链在40℃时收缩,此时Agap-PS-PNIPAM柱的床层渗透系数比25℃时提高了15.7%.  相似文献   
19.
聚N-异丙基丙烯酰胺/类水滑石复合水凝胶的制备及温敏性   总被引:2,自引:2,他引:0  
以类水滑石(LDHs)和N-异丙基丙烯酰胺(NIPA)为原材料,采用自由基引发聚合制得了有机无机PNIPA/LDHs温度敏感复合水凝胶。 通过热重分析仪(TGA)、示差扫描量热仪(DSC)和扫描电子显微镜(SEM)等技术手段表征了材料的结构和性能。 结果表明,PNIPA/LDHs复合水凝胶在33 ℃左右可实现溶胶-凝胶的可逆性变化,LDHs质量分数基本不影响复合水凝胶的胶凝化温度和胶凝时间。 LDHs添加可使PNIPA/LDHs复合水凝胶的热稳定性较NIPA有大幅度提升。 随LDHs质量分数及n(Mg):n(Al)的增加,复合凝胶的吸热峰值稍有增加。 所合成PNIPA/LDHs复合水凝胶表面粗糙不平,具有一定的孔洞结构。  相似文献   
20.
齐印  袁金芳  高青雨 《应用化学》2014,31(6):642-648
以N-异丙基丙烯酰胺(NIPAm)和双丙酮丙烯酰胺(DAAM)为原料,采用可逆加成 断裂链转移(RAFT)可控聚合反应法合成了两亲性两嵌段共聚物 聚(异丙基丙烯酰胺)-b-聚(双丙酮丙烯酰胺)(PNIPAm-b-PDAAM),用红外光谱(FT-IR)、核磁共振(1H NMR)和凝胶渗透色谱(GPC)对其结构和组成进行了表征。 这种共聚物在水溶液中能够自组装成稳定的聚合物胶束,通过荧光探针测得其低临界胶束浓度(CMC)约为7.0 mg/L。 采用扫描电子显微镜(SEM)和动态激光光散射(DLS)测得,PNIPAm-b-PDAAM在水溶液中自组装成核壳结构的球形胶束,SEM测得其直径约150 nm,且分散性良好。 以其聚合物胶束为载体、叶酸(FA)为模型药物,模拟人体生理环境进行药物体外释放。 结果表明,叶酸的负载量及负载率分别为25%和74%。 在人体温度37℃、pH值分别为4.0、6.86、9.18磷酸缓冲溶液(PBS)中,FA在20 h内的释放均比25 ℃快,释放速率随pH值增加而增大,最大累积释放率分别为31%、67%和72%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号