首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4244篇
  免费   970篇
  国内免费   1355篇
化学   1918篇
晶体学   57篇
力学   483篇
综合类   179篇
数学   1775篇
物理学   2157篇
  2024年   47篇
  2023年   140篇
  2022年   190篇
  2021年   196篇
  2020年   149篇
  2019年   164篇
  2018年   118篇
  2017年   194篇
  2016年   179篇
  2015年   213篇
  2014年   377篇
  2013年   320篇
  2012年   293篇
  2011年   328篇
  2010年   333篇
  2009年   341篇
  2008年   320篇
  2007年   280篇
  2006年   264篇
  2005年   240篇
  2004年   239篇
  2003年   220篇
  2002年   171篇
  2001年   183篇
  2000年   135篇
  1999年   125篇
  1998年   124篇
  1997年   102篇
  1996年   88篇
  1995年   94篇
  1994年   79篇
  1993年   70篇
  1992年   75篇
  1991年   69篇
  1990年   48篇
  1989年   33篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   3篇
  1959年   1篇
  1951年   1篇
排序方式: 共有6569条查询结果,搜索用时 15 毫秒
991.
聚苯胺理论比容量高,具有优良的导电性能,是理想的超级电容器电极材料。但是,在长期的充放电过程中容易发生体积的收缩与膨胀,循环寿命差。同时,石墨烯由于具有高的理论比表面积,被广泛用作超级电容器电极材料。将聚苯胺与石墨烯复合,利用二者的协同作用,使复合材料具有优异的电化学性能。本文综述了石墨烯/聚苯胺复合材料的制备方法以及近年来在超级电容器领域的主要研究成果,并就其目前存在的主要问题进行了讨论,最后对石墨烯/聚苯胺复合材料的前景进行了展望。  相似文献   
992.
凝胶作为一种半固态的软物质材料近年来得到很多关注。高分子和小分子都可以作为凝胶的胶凝剂,但是由于在形成过程中两者形成的结构交联与否对形成的凝胶影响很大,表现出了明显的不同。而小分子高分子混合凝胶能整合两者的优势,使混合凝胶兼具小分子凝胶的刺激响应性和高分子凝胶的力学性能。本文从高分子凝胶与小分子凝胶的差异化和互补性方面入手,总结了小分子和高分子的混合凝胶的研究进展。  相似文献   
993.
为了获得高性能的聚丙烯腈(PAN)基碳纤维,采用高分子量PAN共聚物进行纺丝是最有效的解决途径。本文主要从聚合反应机理、共聚单体类型、引发剂种类、混合溶剂选择以及聚合工艺条件等五个方面出发,阐述了混合溶剂沉淀聚合制备高分子量PAN的工艺特点和研究现状。该工艺采用水/有机溶剂混合体系为反应介质,兼具均相溶液聚合和非均相聚合的双重优点,能够合成出高分子量且内部结构疏松的PAN共聚物,是制备高性能PAN前驱体的重要合成方法。  相似文献   
994.
以三羟甲基丙烷三丙烯酸酯(TMPTA)为交联剂,甲基丙烯酸甲酯(MMA)为共聚单体,偶氮二异丁腈为自由基引发剂,以乙醇或乙醇-水混合物作溶剂,在2 wt%的单体浓度下通过沉淀聚合制备了交联聚合物微球.探究了聚合时间、混合溶剂的含水量以及交联剂TMPTA用量对聚合过程及聚合产物的影响.结果表明,增加TMPTA用量可提高单体转化率和微球产率;所得微球的粒径则随着TMPTA用量的增加而减小.TMPTA用量占单体总量40 wt%至80 wt%,反应时间不少于6 h时可制得高度单分散聚合物微球,产率达到80%以上.在反应介质中加入水可明显提高单体转化率和微球产率,当混合溶剂中水的体积分数为35%时,仍可制得高度单分散聚合物微球,产率可达94%;但当混合溶剂中水的体积分数达40 vol%时,所得微球的多分散系数增大.  相似文献   
995.
胶体离子超级电容器作为一种新型的超级电容器,其同时具有能量密度和功率密度高的独特优势。 目前已经发展了包括多种过渡金属阳离子和稀土阳离子,例如Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Sn2+、Sn4+、La3+、Ce3+、Er3+和Yb3+的胶体离子超级电容器体系。 在电化学反应中,识别出电活性物质的存在形式对研究电极反应机理和提高比容量具有重要价值。 本文主要通过对电活性物质比容量的探讨,理解这种新型胶体离子超级电容器的电化学储能机理。 评述了胶体离子超级电容器的比容量核算方式,提出了以阳离子为标准核算比容量的原因,并与传统超级电容器的核算方式进行了比较,表明胶体离子超级电容器在提高能量密度方面具有潜在优势,有望突破现有电化学储能设备的技术瓶颈,实现下一代高能量储能器件的开发。  相似文献   
996.
传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。  相似文献   
997.
马诗瑶  杜慧  耿闯  王扬  庞琳瀚  赵娜  刘筱  郭永泰  曲江英 《应用化学》2016,33(11):1316-1321
采用废弃蟹壳为碳源,KOH为活化剂原位制备了氮/氧共掺杂多孔炭,并研究其作为电极材料在超级电容器中的应用。 固定蟹壳与KOH的质量比为5:3,考察了煅烧温度对所得炭材料产率、孔结构和氮氧含量的影响。 结果表明,蟹壳基炭材料的孔结构和氮/氧含量可通过改变煅烧温度调变。 随着煅烧温度从500 ℃上升至700 ℃,多孔炭的比表面积和孔体积逐渐增大,而氮/氧含量随温度升高则降低。 采用循环伏安和恒流充放电对所得材料的电化学性能进行测试。 结果表明,所得多孔炭的电化学性能取决于其孔结构与氮/氧表面性质的协同作用,其中煅烧温度为600 ℃所得的多孔炭比表面积为612 m2/g,氮和氧含量分别为3.53%和32.8%,在50 mA/g的电流密度下比电容达到310 F/g,循环1000次比电容仍然保持95%以上,展现出良好的电化学性能。  相似文献   
998.
任振波  应宗荣  刘信东  万慧 《应用化学》2016,33(12):1448-1454
分别在盐酸和樟脑磺酸-盐酸混酸溶液中,在蒙脱土基新型氮掺杂多孔碳表面原位聚合苯胺,以制备氮掺杂多孔碳@聚苯胺复合电极材料,采用红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)表征复合材料的组成和形貌。 盐酸掺杂的复合材料呈短棒状形貌,樟脑磺酸-盐酸掺杂材料形貌呈颗粒状及交联片状,樟脑磺酸-盐酸掺杂的结晶性能优于盐酸掺杂。 电化学测试结果表明,樟脑磺酸-盐酸掺杂的复合材料在0.5 A/g电流密度下的质量比电容为412.5 F/g,比盐酸掺杂的(332.4 F/g)高24.1%,等效串联电阻(Rs)和电荷迁移电阻(Rct)小;但盐酸掺杂的复合材料在大电流下电容保持率为81.4%,高于混酸掺杂的58.4%。  相似文献   
999.
以三元硅酸盐熔体团簇结构模型为基础,选取了Na2O-Al2O3-SiO2体系不同成分的团簇结构,采用半经验量子化学方法MNDO/d分别计算该三元体系熔体中不同结构的团簇基元在1473、1873、2000 K温度下的熵、焓、热容和自由能等热力学数据,计算得出不同团簇结构基元的混合自由能,并根据统计热力学波尔兹曼分布定律,推导计算得出Na2O-Al2O3-SiO2三元体系各成分下的混合摩尔自由能。三元硅酸盐熔体的热力学性质与该熔体的微观结构密切相关。  相似文献   
1000.
采用γ射线辐照还原技术获得易分散石墨烯(GNS),并以其为载体,以樟脑磺酸为掺杂剂和软模板,借助化学氧化聚合方法制备出分级孔结构的石墨烯负载聚(1, 5-二氨基蒽醌)(GNS@PDAA)纳米复合材料。运用傅里叶变换红外(FTIR)光谱、拉曼光谱(Raman)、原子力显微镜(AFM)、能谱仪(EDS)、场发射扫描电镜(FE-SEM)和电化学测试等手段研究了不同GNS/DAA质量比对GNS@PDAA复合材料的形貌、结构及超级电容特性的影响。研究表明,当DAA/GNS质量比为6/1时,借助π-π堆叠和网络限域作用, PDAA以20-40 nm纳米颗粒的形式牢固沉积于石墨烯表面,材料内部存在大量10-30 nm尺寸的介孔。该GNS@PDAA复合材料在0.5 A·g-1时呈现最高的比电容(398.7 F·g-1),优异的倍率特性(在50 A·g-1下比电容保持率为71%)和非常好的循环性能(20000次循环后比电容损失仅为8.3%)。进而证实了GNS@PDAA复合材料所组装的超级电容器具有优异的串并联特性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号