全文获取类型
收费全文 | 703篇 |
免费 | 109篇 |
国内免费 | 822篇 |
专业分类
化学 | 1370篇 |
晶体学 | 134篇 |
力学 | 9篇 |
综合类 | 12篇 |
物理学 | 109篇 |
出版年
2024年 | 4篇 |
2023年 | 13篇 |
2022年 | 20篇 |
2021年 | 30篇 |
2020年 | 29篇 |
2019年 | 38篇 |
2018年 | 43篇 |
2017年 | 43篇 |
2016年 | 48篇 |
2015年 | 51篇 |
2014年 | 103篇 |
2013年 | 160篇 |
2012年 | 86篇 |
2011年 | 140篇 |
2010年 | 127篇 |
2009年 | 114篇 |
2008年 | 108篇 |
2007年 | 87篇 |
2006年 | 82篇 |
2005年 | 70篇 |
2004年 | 53篇 |
2003年 | 64篇 |
2002年 | 28篇 |
2001年 | 26篇 |
2000年 | 8篇 |
1999年 | 11篇 |
1998年 | 15篇 |
1997年 | 1篇 |
1996年 | 14篇 |
1995年 | 6篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有1634条查询结果,搜索用时 15 毫秒
1.
水热合成了钒磷酸盐体系中少有的结构中具有多面体共棱连接的层状孔道结构化合物(pipzH2)2[(VO)3(HPO4)2(PO4)2]·H20的纯相。用ICP、单晶XRD、TG-DTA、粉晶XRD和SEM对产物进行了表征。结果表明,化合物在空气中开始失重的温度为274℃,随着温度的升高,化合物中有机分子分解,同时伴随着重结晶过程,但晶体的外观形貌保持不变直至有机部分分解殆尽。相变过程分析和与模板相同的(pipzH2)0.5[(VO)(PO4)]的热稳定性对比研究表明,有机模板的稳定性及分解过程不但影响化合物的热稳定性和热变化过程,还影响原晶体微形貌的保持;无机骨架结合的牢固程度在很大程度上影响化合物的热稳定性。 相似文献
2.
《中国科学B辑》2007,(6)
以Sb2O3、Na2WO4、CoCl2及2,2′-联吡啶为原料,采用水热合成方法,制得了新颖的有机-无机杂化的类Dawson型多金属氧酸盐:[Co(2,2′-bpy)3]2[Co(2,2′-bpy)2Cl][Co(2,2′-bpy)2]H2-[SbW18O60]·4H2O(2,2′-bpy=2,2′-bipyridine),并通过元素分析,IR,XPS,EPR,TG,变温磁化率和X-射线单晶衍射等分析手段对化合物进行表征.X-射线单晶衍射测定表明,该化合物属于正交晶系,Pba2空间群,晶胞参数:a=2.1208(2)nm,b=2.4506(2)nm,c=1.2931(1)nm,Z=2,R1=0.0416,wR2=0.0771.晶体解析表明,Sb2O3与Na2WO4在水热条件下组装成少见的类Dawson型多金属氧酸盐阴离子[SbW18O60]9-,该阴离子的{W18}簇结构骨架中包含一个三角锥形{SbO3}基团.EPR谱分析表明,高自旋态和低自旋态Co2 共存于标题化合物中.磁性质研究表明标题化合物显示抗磁性. 相似文献
3.
本文采用水热合成法制备了一个三维手性大孔开放骨架磷酸镓Ga16P16O75·4[1,6-C6H18N2]·[C2H10N2]·2H2O(简称Hit-5).反应起始原料摩尔配比为:1 GaOOH:15 H3PO4:7.5 H2N(CH2)6NH2:0.5 C2H8N2:555 H2O.Hit-5属正交晶系,P21212空间群,晶胞参数:a=0.8671(1)nm,b=1.7945(1)nm,c=0.9101(1)nm,β=108.33(1)°,V=1.3443(2)nm3,Z=4.Hit-5的骨架是由Ga3P3六聚体和Ga4P4八聚体两个不同的二级结构单元通过共顶点联接构成三维纳米孔结构,在[001]方向呈现16-元环孔道. 相似文献
4.
5.
水热法合成了YL iF4∶Er3 ,Tm3 ,Yb3 ,其中Er3 、Yb3 和Tm3 的摩尔分数分别为1%、1.5%和2%。当用355 nm光激发时,其发光为蓝色,峰值位于450 nm,对应于Tm3 的1D2→3F4跃迁。用378 nm激发时,发光为绿色,主要发光峰位于552 nm。980 nm光激发时,发光为白色,发光峰分别位于665(651),552(543),484,450 nm处,并在648 nm处还观察到了一个发光峰,其中最强的发射为红光。YL iF4∶Er3 ,Tm3 ,Yb3 的蓝光来源于Tm3 的激发态1G4到基态3H6的跃迁,绿光来源于Er3 的4S3/2和2H11/2到基态4I15/2的跃迁,红光既来源于Tm3 的1G4→3F4的跃迁,也来源于Er3 的4F9/2→4I15/2的跃迁。在上转换发光中,还探测到了紫外光359 nm的发射。监测665 nm得到的激发光谱不同于监测552 nm的激发光谱,在665 nm的激发光谱中出现了对应Tm3 的1G4能级的峰。在双对数曲线中,蓝光484 nm、绿光552 nm和红光665 nm的斜率分别为2.25、2.28和2.21,紫外光359 nm的斜率为2.85。因此在980 nm激发下,蓝光484 nm、绿光552 nm和红光665 nm都是双光子过程,紫外光359 nm的发射是三光子过程。 相似文献
6.
采用水热合成方法添加KOH在SiO2颗粒表面包覆Mn2+掺杂纳米Zn2SiO4,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、能谱、光致发光(PL)光谱仪对产物的晶体结构、形貌及光学性能进行表征,并对Zn2SiO4晶体在水热反应过程中的反应机制进行了讨论。XRD测试结果表明:220℃水热条件下,添加少量KOH,反应不同时间后,可在石英砂表面生成一层Zn2SiO4;SEM照片显示所生成的Zn2SiO4为六棱柱形,并且不同反应条件下Zn2SiO4的包覆程度不同。反应产物经光致发光性能研究表明:Mn2+掺杂纳米Zn2SiO4包覆SiO2样品中显示两套光致发光谱,一套为250nm左右激发产生的522nm绿色发光带,另一套为340~410nm宽带激发的440nm蓝色发光带,前者为典型的Mn2+离子发光,后者440nm发光带则有可能来源于基体SiO2的氧空位缺陷。 相似文献
7.
8.
9.
Hydrothermal Synthesis and Vacuum Ultraviolet-Excited Luminescence Properties of Novel Dy^3+-doped GdPO4 White Light Phosphors 下载免费PDF全文
Novel Dy^3+-doped GdPO4 white light phosphors with a monoclinic system are successfully synthesized by the hydrothermal method at 240℃. The strong absorption at around 147nm in the excitation spectrum is assigned to the host absorption. It is suggested that the vacuum ultraviolet excited energy is transferred from the host to the Dy^3+ ions. The f - d transition of the Dy^3+ ion is observed to be located at 182nm, which is consistent with the calculated value using Dorenbos's expression. Under 147nm excitation, Gd0.92PO4:0.08Dy^3+ phosphor exhibits two emission bands located at 572 nm (yellow) and 478 nm (blue), which correspond to the hypersensitive transitions ^4 F9/2-^6 H13/2 and ^4 F9/2-^6 H15/2. The two emission bands lead to the white light. Because of the strong absorption at about 147nm, Gd0.92PO4:0.08Dy^3+ under vacuum ultraviolet excitation is an effective white light phosphor, and has promising applications to mercury-free lamps. 相似文献
10.
利用水热法合成了YLiF4: Er3 , Tm3 , Yb3 , 其中Er3 和Yb3 的浓度保持固定不变, 分别为1 mol%和1.5 mol%, Tm3 浓度变化范围是2 mol%~8 mol%. 在这种共掺杂体系中, 同时观察到了Er3 , Tm3 和Yb3 的吸收, 且Tm3 的吸收随着其浓度的增强而增强. 在980 nm光的激发下, 当Tm3 浓度很小时, 这种材料的上转换发光为白光. 其中蓝光主要来源于Tm3 的激发态1G4到基态3H6的跃迁, 绿光来源于Er3 的4S3/2和2H11/2到基态4I15/2的跃迁, 红光既来源于Tm3 的1G4→3F4的跃迁, 也来源于Er3 的4F9/2→4I15/2的跃迁. 并且这种上转换发光强度随着Tm3 浓度的增强而降低, 但对应不同能级跃迁的发光强度降低的幅度不同, 这是因为Er3 和Tm3 之间的相互作用. 相似文献