全文获取类型
收费全文 | 198篇 |
免费 | 41篇 |
国内免费 | 50篇 |
专业分类
化学 | 72篇 |
晶体学 | 1篇 |
力学 | 31篇 |
综合类 | 23篇 |
数学 | 48篇 |
物理学 | 114篇 |
出版年
2024年 | 16篇 |
2023年 | 57篇 |
2022年 | 66篇 |
2021年 | 59篇 |
2020年 | 20篇 |
2019年 | 14篇 |
2018年 | 5篇 |
2017年 | 8篇 |
2016年 | 5篇 |
2015年 | 5篇 |
2014年 | 4篇 |
2013年 | 2篇 |
2012年 | 1篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 3篇 |
2003年 | 2篇 |
2002年 | 1篇 |
1999年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1959年 | 1篇 |
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
为了进一步提高全量程气体超声流量计的测量精度,基于多通道声波到时和实时温度,提出了一种交叉分段差分进化(Differential Evolution)支持向量回归(Support Vector Regression)DE-SVR模型。考虑到气体在不同流量条件下的流体状态不同,提出了交叉分段处理的方法,采用DE算法优化选取SVR参数。实验结果表明,对于16~1600m3/h全量程,交叉分段DE-SVR和传统积分方法计算气体流量的平均相对误差分别为0.00447和0.02781,前者较后者降低了83.93%;对于16~160m3/h小流量,交叉分段DE-SVR和无分段DE-SVR算法计算结果平均相对误差分别为0.00436和0.03214,前者较后者降低了86.43%。该方法有效避免了声道长度、探头角度以及管道直径等参数不确定性对流量计算的影响,为全量程气体流量的高精度测量提供了保障。 相似文献
2.
3.
4.
对于航空瞬变电磁的低频探地问题,除了精度和效率需要考虑,深地探测问题的复杂度也不容忽视,特别是对于低频复杂问题存在异常体与背景间的多尺度效应.为了模拟开域问题,有限厚度区域的完全匹配层被用于截断计算域,然而这也无形中增大了整个模型,造成计算复杂度增加.鉴于此,提出了一种新的基于极限梯度提升(extreme gradient boosting, XGB)的完美匹配单层模型,并将该模型集成到时域有限差分求解器中,以进一步提高时域有限差分仿真的性能.所提出的基于XGB的完美匹配单层模型通过特征注意力集成学习方法可以获得更高的精度,同时占用更少的内存、消耗更少的时间.此外,由于该模型依托于传统机器学习模型,因此它在模型训练的稳定性和轻量级方面具有显著的优势.最后,通过对航空瞬变电磁应用进行三维数值模拟,验证了该方法的有效性和稳定性.该模型不仅在精度、效率和问题复杂性方面具有优势,而且还可以成功地集成到时域有限差分求解器中,解决低频航空瞬变电磁问题. 相似文献
5.
利用物种间血液成分的差异来识别物种,对生物医学、医疗健康、海关、刑侦、食品安全、野生动物保护等工作十分重要。但目前的研究都是针对群体细胞展开,忽略了单细胞的异质性,开展基于单细胞的血液光谱分类方法研究非常迫切。在此提出了一种基于荧光光镊和机器学习的单细胞血液分类方法,利用光镊实现了单细胞捕获,通过荧光光谱检测系统获得了单细胞荧光光谱数据,并基于机器学习方法实现了准确分类。首先,设计并搭建了一套荧光光镊系统,实现了单细胞捕获和荧光光谱检测。然后,制备了马、猪、犬、鸡四种动物的红细胞稀释液,以440 nm激光作为荧光激发光源,获得了四个物种每种100条、共计400条荧光光谱数据,并进行了背景去除、平滑、归一化的预处理,消除了信号中的噪声干扰。随后,建立了随机森林分类模型,分析了当抽取特征数k=20时,模型中树的棵数与预测准确率之间的关系,当决策树m=500时,分类正确率趋于稳定,有很高的分类正确率和运行效率。进一步地,设定样本数据的30%作为测试集、 70%为训练集,计算不同波长与特征重要性之间的关系,得到了10个分类准确率,并取平均值作为模型分类的准确率,测试集最终准确率达到93.1%,... 相似文献
6.
主要利用支持向量机的机器学习方法开展估算大气光学湍流廓线的研究。通过选取沿海地区实测探空数据,利用温度、压强、相对湿度、风速、风速切变和温度切变实测廓线数据,依据支持向量机估算得到不同日期的大气光学湍流廓线,并与实际测量值进行比较。误差分析结果表明:在2018-05-05和2018-05-10,估算的大气光学湍流廓线与实际测量廓线的均方根误差分别为0.4461和0.3939,相关性分别为70.42%和62.17%。研究证明:根据实测数据训练学习得到的支持向量机模型能够较为准确地估算沿海地区大气光学湍流廓线,虽有一定误差,但大致趋势吻合,验证了支持向量机方法估算大气光学湍流廓线的可行性,从而为利用常规气象探空数据直接估算大气光学湍流廓线,并为建立相关模式的可能性打下基础。 相似文献
7.
8.
磁性材料是信息时代重要的基础材料,不同的磁性基态是磁性材料广泛应用的前提,其中铁磁基态是高性能磁性材料的关键要求.本文针对材料项目数据库中的无机磁性材料数据,采用机器学习技术实现无机磁性材料铁磁、反铁磁、亚铁磁和顺磁基态的分类以及无机铁磁性材料磁矩的预测.提取了材料的元素和结构属性特征,通过两步式特征选择方法分别为磁性基态分类和磁矩预测筛选了20个材料特征,发现材料特征中的电负性、原子磁矩和原子外围轨道未充满电子数对两种磁性性能具有重要贡献.基于机器学习的随机森林算法,构建了磁性基态分类模型和磁矩预测模型,采用10折交叉验证的方法对模型进行定量评估,结果表明所构建的模型具有足够的精度和泛化能力.在测试检验中,磁性基态分类模型的准确率为85.23%,精确率为85.18%,召回率为85.04%, F1分数为85.24%;磁矩预测模型的拟合优度为91.58%,平均绝对误差为0.098μB/atom.本研究为无机铁磁性材料的高通量分类筛选与磁矩预测提供了新的方法和选择,可为新型无机磁性材料的设计研发提供参考. 相似文献
9.
尚慧吴进锦许志兵王慧捷尹建华 《光散射学报》2022,(4):322-327
近红外(NIR)光谱,可提供样本丰富的结构和成分信息。机器学习主要用于数据的分析和挖掘,可以对数据进行精确分类和信息提取。本研究采用自研的NIR光谱探针技术进行乳腺癌组织的原位光谱采集并进行癌变(光谱)分析;运用基线校正(BC)、标准正态变量变换(SNV)、一阶导数二阶多项式21点Savitzky-Golay平滑(1st-2-21SG)和二阶导数三次多项式25点Savitzky-Golay平滑(2nd-3-25SG))四种方法进行光谱预处理;结合机器学习方法,包括主成分分析(PCA)、K最近邻(KNN)、Fisher判别分析(FDA)及支持向量回归(SVR),进行乳腺癌变和癌旁组织的分类和判别。研究发现PCA-KNN模型的最优预测结果为基于BC+SNV,其准确率、敏感性及特异性达88.34%、98.21%、76.11%。PCA-FDA模型的最优结果为基于BC+1st-2-21SG,其准确率、敏感性及特异性达90.00%、98.21%、79.54%。SVR模型的最优结果为基于BC+2nd-3-25SG... 相似文献
10.
机器学习势由于具有与第一性原理计算相当的准确性,且低得多的计算成本,在原子模拟中极具前景. 然而原子机器学习势的可靠性、速度和可迁移性在很大程度上取决于原子构型的表示. 适当地选取用作机器学习程序输入的描述符是一个成功的机器学习表示的关键. 本文发展了一种简单有效的方法,可以基于训练数据固有的相关性,从大量待选的描述符中自动选取一组最佳的线性独立原子特征. 通过对几个具有较少冗余线性独立嵌入密度描述符的基准分子构建嵌入原子神经网络势的应用,证明了这种新方法的有效性和准确性. 该算法可以大大简化原子特征的初始选取,并极大地提高原子机器学习势的性能. 相似文献