全文获取类型
收费全文 | 4208篇 |
免费 | 1609篇 |
国内免费 | 988篇 |
专业分类
化学 | 1482篇 |
晶体学 | 288篇 |
力学 | 493篇 |
综合类 | 163篇 |
数学 | 97篇 |
物理学 | 4282篇 |
出版年
2024年 | 42篇 |
2023年 | 142篇 |
2022年 | 127篇 |
2021年 | 177篇 |
2020年 | 120篇 |
2019年 | 183篇 |
2018年 | 132篇 |
2017年 | 181篇 |
2016年 | 224篇 |
2015年 | 225篇 |
2014年 | 432篇 |
2013年 | 327篇 |
2012年 | 303篇 |
2011年 | 299篇 |
2010年 | 359篇 |
2009年 | 365篇 |
2008年 | 410篇 |
2007年 | 285篇 |
2006年 | 246篇 |
2005年 | 296篇 |
2004年 | 256篇 |
2003年 | 257篇 |
2002年 | 187篇 |
2001年 | 175篇 |
2000年 | 136篇 |
1999年 | 132篇 |
1998年 | 102篇 |
1997年 | 86篇 |
1996年 | 91篇 |
1995年 | 67篇 |
1994年 | 64篇 |
1993年 | 80篇 |
1992年 | 77篇 |
1991年 | 56篇 |
1990年 | 61篇 |
1989年 | 49篇 |
1988年 | 15篇 |
1987年 | 14篇 |
1986年 | 10篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1951年 | 2篇 |
排序方式: 共有6805条查询结果,搜索用时 15 毫秒
41.
42.
采用量子 Sutton-Chen多体势, 对熔体初始温度热历史条件对液态金属Ni快速凝固过程中微观结构演变的影响进行了分子动力学模拟研究. 采用双体分布函数g(r)曲线、键型指数法、原子团类型指数法和三维可视化等分析方法对凝固过程中微观结构的演变进行了分析. 结果表明: 熔体初始温度对凝固微结构有显著影响, 但在液态和过冷态时的影响并不明显, 只有在结晶转变温度Tc附近才开始充分显现出来. 体系在1×1012 K/s的冷速下, 最终均形成以1421和1422键型或面心立方(12 0 0 0 12 0)与六角密集(12 0 0 0 6 6) 基本原子团为主的晶态结构. 末态时, 不同初始温度体系中的主要键型和团簇的数目有很大的变化范围, 且与熔体初始温度的高低呈非线性变化关系. 然而, 体系能量随初始温度呈线性变化关系, 初始温度越高, 末态能量越低, 其晶化程度越高. 通过三维可视化分析进一步发现, 在初始温度较高的体系中, 同类团簇结构的原子出现明显的分层聚集现象, 随着初始温度的下降, 这种分层现象将被弥散开去. 可视化分析将更有助于对凝固过程中微观结构演变进行更为深入的研究.
关键词:
液态金属Ni
熔体初始温度
微观结构
分子动力学模拟 相似文献
43.
基于电化学-热耦合模型研究聚合物锂离子动力电池放电过程热行为, 分析了放电倍率、冷却条件对电池放电过程的温度变化及分布的影响规律. 结果表明: 3C放电时, 模型计算结果与实测结果的平均偏差为0.57 K, 方差为0.15, 说明模型准确度较高. 电芯的平均生热率在整个放电过程中呈现出增加的趋势, 初期和末期增长较快. 大倍率放电时, 与电流密度的平方呈正比的不可逆热所占的比重较大, 小倍率放电时, 电化学反应可逆热占主导. 改善冷却条件能降低电池放电过程的平均温度, 对流传热过程的表面传热系数为5 W/(m2·K), 1 C, 3 C, 5 C放电结束时, 电芯的平均温升为分别为6.46 K, 17.67 K, 27.53 K, 当对流传热过程的表面传热系数增加至25 W/(m2·K)时, 温升比自然对流条件下相同倍率放电时的温度分别降低了2.91 K, 4.68 K, 5.62 K, 但电芯温度分布的不一致性也会加剧.
关键词:
电化学
耦合
锂离子动力电池
温度分布 相似文献
44.
黄土高原地区作为气候敏感区和生态脆弱区地表干 湿状况的年际和年代际变化特征十分明显. 但以往主要是针对夏季进行分析, 而对黄土高原秋季干湿变化规律及大气环流机理的认识非常有限. 本文基于中国589站最近50 a (1961–2010年)月降水和气温月平均资料、NCEP/NCAR提供的再分析资料以及NOAA提供的海表温度(Sea Surface Temperature, SST) 资料, 运用带通/低通滤波、小波分析、EOF/REOF和回归分析等方法, 在对中国秋季干湿时空演化分类的基础上, 通过研究秋季黄土高原中部干湿演变周期、大气环流特征及与海温的多尺度相关关系, 以揭示影响黄土高原中部秋季干湿变化的物理机理, 并确定影响该区域干湿状况的前兆信号. 小波功率谱分析表明, 黄土高原中部秋季干湿指数存在准4 a和准8 a的周期, 1970–1990年准8 a尺度周期振荡尤为明显. 年际(周期≤ 8 a) 尺度上偏湿年的大气环流特征是, 欧亚大陆中高纬呈“双阻型”, 200 hPa西风急流显著北移, 日本海-鄂霍茨克海受反气旋控制, 其底部的偏东水汽输送带将水汽输入研究区. 年代际(周期 > 8 a)尺度上偏湿年的大气环流特征是, 东亚大陆为一致的低值系统; 200 hPa东亚副热带西风急流减弱北移, 研究区主要水汽来源由经孟加拉湾在中南半岛转向的南风水汽输送及中纬度的西风水汽输送组成. 整个序列上, Nino3区SST指数(Nino3I)超前5个月与秋季干湿指数已呈显著的负相关关系, 而孟加拉湾–中国南海SST指数(BayI)则超前3个月与干湿指数呈现显著的负相关关系. 年际尺度上, 秋季Nino3I, BayI均与秋季干湿指数存在显著相关(准4 a, 4–6 a), 而年代际尺度上, 只有BayI与秋季干湿指数存在显著相关性(准10 a). 黄土高原中部秋季干湿的年际和年代际周期的确定、大气环流异常特征的认识及与海温的多尺度相关关系的建立, 不仅揭示了影响该区域干湿变化的物理机理, 也为干旱气候预测提供了重要的前兆信号.
关键词:
黄土高原中部
干湿特征
海表温度
小波分析 相似文献
45.
《光学技术》2013,(4):297-299
可调谐半导体激光吸收光谱技术(TDLAS)具有高选择性、高准确性的优点,为逃逸氨的在线检测提供了可靠的技术手段。首先研究了温度对NH3浓度检测的影响,表明在25300℃之间,浓度随温度的升高而降低;然后在室温为25℃时,利用TDLAS系统对浓度为10300℃之间,浓度随温度的升高而降低;然后在室温为25℃时,利用TDLAS系统对浓度为10100ppm的NH3进行检测,采集得到其二次谐波光谱。比较了单光程和多光程样品池测量结果,得到单光程样品池最低检出限为22.9ppm,多光程样品池的检测限为1.21ppm,多光程样品池能够明显地提高检测精度。结果表明,该系统能够适应现场测量环境。 相似文献
46.
在可调谐激光吸收光谱(TDLAS)技术中,携带气体浓度信息的二次谐波信号易受激光扫描信号与调制信号的幅值、频率等参数影响。基于TDLAS技术搭建了CO浓度检测硬件系统,与对应仿真模型进行比较分析,研究了调制参数对二次谐波信号峰值、信噪比、对称性以及峰宽的影响,总结出具体变化规律。实验确定了系统最优调制参量,在硬件不变的情况下提高了检测精度。对CO在1567.7nm的吸收光谱进行了检测,发现测量浓度随着温度的升高而降低,最大相对误差已超过15%。为了减少温度变化对测量的影响,分别采用RBF及BP神经网络、PSO优化BP神经网络和WOA优化BP神经网络算法对系统进行补偿。结果表明,WOA优化BP神经网络方法的补偿效果最好,修正后浓度相对误差降至1%以下,有效提高了系统在变温环境下的准确性和稳定性。研究为系统的调制参数设置以及精准检测提供参考,为后续实验提供了有价值的指导。 相似文献
47.
48.
针对高热流密度激光介质高效散热与均匀冷却技术需求,设计并搭建了以去离子水为冷却工质的开式单喷嘴喷雾冷却实验平台,实验研究获得了不同热流密度(16~110 W/cm2)、不同冷却工质流量(200~300 mL/min)以及不同喷雾高度(15~25 mm)下单相喷雾冷却换热系数及其冷却均匀性效果。结果表明:该实验工况下,不同热流密度条件下喷雾高度及工质流量对于单相喷雾冷却换热效率及温度均匀性影响显著;喷雾高度15 mm、工质流量200 mL/min时获得最大对流换热系数为5.93 W/(cm2·K);喷雾高度15 mm、工质流量250 mL/min时面积20 mm×20 mm的热源表面温度均匀性最佳可优于0.6 ℃。 相似文献
49.
相干anti-Stokes Raman散射(coherent anti-Stokes Raman scattering,CARS)技术作为一种非接触测量手段,已广泛应用于多种发动机模型燃烧室温度测量及地面试验.然而,目前的工作主要集中在稳态燃烧场温度的测量,缺乏用高分辨率的单脉冲来测量瞬变的燃烧火焰温度及组分浓度的研究.基于CARS理论,结合多参数拟合算法,开发了基于MATLAB的CARS光谱计算和拟合程序CARSCF;利用McKenna平面火焰炉在不同工况下进行了温度测量,并与DLR测量结果进行对比,结果显示开发的CARSCF具有较高的测量重复性和准确性;最后将CARS技术应用于测量超燃冲压发动机点火过程中的温度测量,获取了点火过程中的温度.结果显示,在来流Mach数为3的条件下,H2/air点火过程中温度呈现急剧上升然后缓慢下降,而CARS信号则呈现急剧上升然后急剧下降随后又缓慢上升的趋势,并且在点火过程中最高温度为1 511 K. 相似文献
50.