首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16427篇
  免费   5885篇
  国内免费   8938篇
化学   13092篇
晶体学   899篇
力学   2622篇
综合类   439篇
数学   1059篇
物理学   13139篇
  2024年   210篇
  2023年   683篇
  2022年   891篇
  2021年   914篇
  2020年   600篇
  2019年   734篇
  2018年   557篇
  2017年   678篇
  2016年   747篇
  2015年   859篇
  2014年   1686篇
  2013年   1367篇
  2012年   1297篇
  2011年   1439篇
  2010年   1304篇
  2009年   1341篇
  2008年   1515篇
  2007年   1342篇
  2006年   1280篇
  2005年   1196篇
  2004年   1233篇
  2003年   1243篇
  2002年   1060篇
  2001年   1023篇
  2000年   771篇
  1999年   611篇
  1998年   582篇
  1997年   624篇
  1996年   459篇
  1995年   476篇
  1994年   463篇
  1993年   354篇
  1992年   401篇
  1991年   360篇
  1990年   342篇
  1989年   304篇
  1988年   76篇
  1987年   72篇
  1986年   65篇
  1985年   39篇
  1984年   19篇
  1983年   19篇
  1982年   10篇
  1981年   1篇
  1979年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
建立了气相色谱-质谱法测定书写笔用橡塑材料中18种多环芳烃(PAHs)含量的方法。在1 g样品中加入40 mL甲苯,于60℃水浴中超声提取80 min,取2 mL样品溶液,采用硅胶固相萃取柱(6 mL/2 g)净化,经5 mL甲苯洗脱,收集洗脱液于试管中,氮吹至近干;再加入2 mL 0.1 mg·L-1的内标溶液,在离子源温度为280℃,选择离子监测(SIM)模式下进行测定,内标法定量。结果显示:18种PAHs标准曲线的线性范围均为0.005~1.000 mg·L-1,检出限(3S/N)为0.05~0.10 mg·kg-1;对实际样品进行3个浓度水平的加标回收试验,18种PAHs的回收率为90.0%~104%,测定值的相对标准偏差(RSD,n=7)为1.0%~7.5%。  相似文献   
992.
串联反应能够减少反应步骤、简化操作、降低成本、实现高效率转化,符合原子经济性和绿色化学理念.特别是有机催化的不对称串联环化反应以一锅法连续催化多个化学反应,为高效合成多手性中心环状结构提供了新方法.不对称Michael/环化串联反应是构建光学活性状化合物的常用方法之一,近些年,各种有机小分子催化剂应用于不对称Michael/环化串联反应的报道不断增加,并且取得了重大进展.我们根据不同的催化剂类型综述了近5年来关于不对称Michael/环化串联反应的研究进展,并对有机催化不对称Michael/环化串联反应的发展趋势进行了展望.  相似文献   
993.
本研究利用Pb^(2+)与硫黄素T(ThT)对功能核酸G-四链体(G4)中心位点的竞争关系,构建了一种荧光生物传感器用于Pb^(2+)的简单灵敏检测。ThT可以特异性结合G4,且在结合后显示出明显的荧光信号。Pb^(2+)能与G4形成更稳定的结构,故而当溶液中存在Pb^(2+)时,ThT会从G4-ThT体系中被竞争释放出来,失去受G4束缚状态下的刚性结构,从而降低了其荧光强度。在最优条件下,该体系荧光信号与Pb^(2+)浓度在5~1000 nmol/L范围内呈现良好的线性关系,检测限为1.6 nmol/L,同时实现对中药材独活中Pb^(2+)含量的加标测定。方法具有操作简便、响应快速以及高选择性超灵敏的特点,在Pb^(2+)检测方面有良好的应用潜力。  相似文献   
994.
应用零价铁(ZVI)去除水中(类)金属(含氧)离子是近年来研究的热点。在ZVI除污染过程中,同步提升ZVI除污的反应活性与电子效率对该技术进一步推广应用至关重要。本文综述了近十年(2011-2021年)ZVI的提升技术,主要涉及硫化、外加弱磁场、投加Fe2+、投加氧化剂以及其他新型技术。从不同体系广谱研究以及单一体系具体研究的角度,系统分析了这些技术对ZVI去除含氧水体中(类)金属(含氧)离子的反应活性、去除容量、电子效率的提升表现及作用机制。最后,对ZVI技术未来的研究方向作出了展望,以期促进ZVI技术的进一步完善与发展。本文有望为增强零价铁去除污染物的实际效能提供新的探索方向并完备相关理论基础。  相似文献   
995.
陈向娟  王欢  安伟佳  刘利  崔文权 《化学进展》2022,34(11):2361-2372
有机碳材料因电荷传导效率高、结构可调、无污染等特点被广泛应用于光电催化领域。将含有机碳材料的催化剂作为电极材料已成为光电催化领域的研究热点之一。本文介绍了几种常见的有机碳材料的结构、特点、制备方法及其研究方向,并将含有机碳材料的电极进行分类。主要总结并论述了有机碳材料在光电催化系统中的五种作用:(1)作为催化剂;(2)作为光敏剂(3)作为电子介质;(4)作为催化剂载体;(5)作为光电极的稳定剂,最后阐述了有机碳材料在光电催化系统中的研究现状及难点问题。  相似文献   
996.
朱振威  邱景义  王莉  曹高萍  何向明  王京  张浩 《电化学》2022,28(12):2219003
锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。  相似文献   
997.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   
998.
利用六水合硝酸铈、六水合硝酸钴和尿素通过水热法合成麦叶状Co_(3)O_(4)/CeO_(2)复合电极材料,对其进行电化学性能分析,发现Co_(3)O_(4)/CeO_(2)复合电极材料具有良好的电化学可逆性和功率特性,且其电容特性和大电流放电特性也很优越,是理想的超级电容器材料.  相似文献   
999.
1000.
研究影响电催化氧还原反应活性的因素对于合理设计高效的氧还原反应催化剂至关重要。调节催化剂电子结构通常被用于精确调控电催化氧还原反应活性。然而, 该反应发生在液/气/固界面, 很少有报道调控分子催化剂的亲疏水性来提高其催化活性。在此, 我们报道了两种钴卟啉NO2-CoP(5,10,15,20-四(4-硝基苯基)钴卟啉)和5F-CoP(5,10,15,20-四(五氟苯基)钴卟啉)并研究了其电催化氧还原反应性能。通过同时调控meso-位取代基的电子结构和亲水性能, NO2-CoP显示出比5F-CoP更高的电催化氧还原反应活性, 其半波电位向阳极方向移动近60 mV。NO2-CoP比5F-CoP具有更好的亲水性。理论计算表明, NO2-CoP比5F-CoP更容易有效地与O2分子结合形成CoIII-O2·-。这项工作提供了一个简单而有效的策略, 通过使用吸电子和亲水取代基来提高钴卟啉的氧还原反应活性。该策略对于设计和开发其他用于电催化的分子催化剂体系也具有重要的启发意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号